Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ... n.
Example:
Input: 3
Output:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
Explanation:
The above output corresponds to the 5 unique BST's shown below:
1 3 3 2 1
/ / /
3 2 1 1 3 2
/ /
2 1 2 3
# Definition for a binary tree node.
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution(object):
def generateTrees(self, n):
"""
:type n: int
:rtype: List[TreeNode]
"""
if n == 0: return []
return self.generateTreesDFS(1, n)
def generateTreesDFS(self, left, right):
if left > right:
return [None]
res = []
for i in range(left, right + 1):
left_nodes = self.generateTreesDFS(left, i - 1)
right_nodes = self.generateTreesDFS(i + 1, right)
for left_node in left_nodes:
for right_node in right_nodes:
root = TreeNode(i)
root.left = left_node
root.right = right_node
res.append(root)
return res
所有的解就是分别以1,2,3...n做根节点的解的集合.而以i为根节点的解的个数就是左右子树的解的积.
递归求解.