zoukankan      html  css  js  c++  java
  • Segment Tree

    Leetcode上一道题,给定一个整数数组,要实现:

    • 求[i, j]所有元素的和,0 <= i <= j <= n - 1,sumRange(i, j)
    • 数组的元素会被修改, update(i, val)
    • 这两个函数会被均匀的调用很多次

    最简单的方法是求和O(n),修改元素O(1),时间复杂度太大,使用Segment Tree可以将二者的时间复杂度均变为O(logn)

    Segment Tree:

    • 叶子节点是输入数组中的所有元素
    • 内部节点是其孩子节点所带信息的merge
    • Segment Tree可以由数组实现,数组索引i的左孩子为$2 * i + 1$,右孩子为$2 * i + 2$,父节点在$lceil (i - 1) / 2 ceil$
    • Segment Tree的高度为$lceil log_2n ceil$, 因此该数组的大小为$2 * 2 ^{lceil log_2n ceil} - 1$

    一下代码是上述题目的C++递归实现:

     1 #include <math.h>
     2 #include <vector>
     3 #include <iostream>
     4 using namespace std;
     5 
     6 class segTree{
     7 public:
     8     vector<int> tree;
     9     int n;
    10     segTree(vector<int>& arr){
    11         n = arr.size();
    12         int treeSize = 2 * pow(2, ceil(log2(double(n)))) - 1;
    13         tree.resize(treeSize);
    14         buildSegTree(arr, 0, 0, n - 1);
    15     }
    16     
    17     
    18     void buildSegTree(vector<int>& arr, int treeIndex, int lo, int hi){
    19         if(lo == hi){
    20             tree[treeIndex] = arr[lo];
    21             return;
    22         }
    23         int mid = lo + (hi - lo) / 2;
    24         buildSegTree(arr, 2 * treeIndex + 1, lo, mid);
    25         buildSegTree(arr, 2 * treeIndex + 2, mid + 1, hi);
    26         tree[treeIndex] = merge(tree[2 * treeIndex + 1], tree[2 * treeIndex + 2]);
    27     }
    28 
    29 
    30     int querySegTree(int treeIndex, int lo, int hi, int i, int j){
    31         if(lo > j || hi < i)
    32             return 0;
    33         if(i <= lo && j >= hi)
    34             return tree[treeIndex];
    35         
    36         int mid = lo + (hi - lo) / 2;
    37         
    38         if(i > mid)
    39             return querySegTree(2 * treeIndex + 2, mid + 1, hi, i, j);
    40         else if(j <= mid)
    41             return querySegTree(2 * treeIndex + 1, lo, mid, i, j);
    42         
    43         int leftQuery = querySegTree(2 * treeIndex + 1, lo, mid, i, mid);
    44         int rightQuery = querySegTree(2 * treeIndex + 2, mid + 1, hi, mid + 1, j);
    45 
    46         return merge(leftQuery, rightQuery);
    47     }
    48 
    49 
    50     void updateValSegTree(int treeIndex, int lo, int hi, int arrIndex, int val){
    51         if(lo == hi){
    52             tree[treeIndex] = val;
    53             return;
    54         }
    55 
    56         int mid = lo + (hi - lo) / 2;
    57 
    58         if(arrIndex > mid)
    59             updateValSegTree(2 * treeIndex + 2, mid + 1, hi, arrIndex, val);
    60         else if(arrIndex <= mid)
    61             updateValSegTree(2 * treeIndex + 1, lo, mid, arrIndex, val);
    62         
    63         tree[treeIndex] = merge(tree[2 * treeIndex + 1] , tree[2 * treeIndex + 2]);
    64     }
    65 
    66 
    67     int merge(int& v1, int& v2){
    68         return v1 + v2;
    69     }
    70 };
    71 
    72 
    73 int main(){
    74     vector<int> arr1 = {1, 3, 5, 7, 9, 11};
    75     segTree test(arr1);
    76     for(int item : test.tree)
    77         cout << item << " ";
    78     cout << endl;
    79     int sum = test.querySegTree(0, 0, test.n - 1, 0, 2);
    80     cout << "sum = " << sum << endl;
    81     test.updateValSegTree(0, 0, test.n - 1, 1, 4);
    82     int updatedSum  = test.querySegTree(0, 0, test.n - 1, 0, 2);
    83     cout << "updated sum = " << updatedSum << endl;
    84     return 0;
    85 }
  • 相关阅读:
    Assembly之instruction之CMP
    Assembly之Instruction之Byte and Word
    MSP430之section(1)
    MSP430之software development flow
    openMSP430之Custom linker script
    CDC之Synchronizers
    CDC之Metastability
    Embedded之Stack之三
    Embedded之Stack之二
    Embedded之Stack之一
  • 原文地址:https://www.cnblogs.com/betaa/p/11416493.html
Copyright © 2011-2022 走看看