作用:训练网络之后保存训练好的模型,以及在程序中读取已保存好的模型
使用步骤:
- 实例化一个Saver对象 saver = tf.train.Saver()
- 在训练过程中,定期调用saver.save方法,像文件夹中写入包含当前模型中所有可训练变量的checkpoint文件 saver.save(sess,FLAGG.train_dir,global_step=step)
- 之后可以使用saver.restore()方法,重载模型的参数,继续训练或者用于测试数据 saver.restore(sess,FLAGG.train_dir)
在save之后会在相应的路径下面新增如下四个红色文件:
在saver实例每次调用save方法时,都会创建三个数据文件和一个检查点(checkpoint)文件,权重等参数被以字典的形式保存到.ckpt.data中,图和元数据被保存到.ckpt.meta中,可以被tf.train.import_meta_graph加载到当前默认的图
softmaxRegression.py
1 # _*_ coding:utf-8 _*_ 2 import os 3 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' 4 import tensorflow as tf 5 from tensorflow.examples.tutorials.mnist import input_data 6 7 #get the datase 8 mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) 9 10 print(mnist.train.images.shape,mnist.train.labels.shape) 11 12 sess = tf.InteractiveSession() 13 14 x = tf.placeholder(tf.float32,[None,784]) 15 W = tf.Variable(tf.zeros([784,10])) 16 b = tf.Variable(tf.zeros([10])) 17 18 y = tf.nn.softmax(tf.matmul(x,W)+b) 19 y_ = tf.placeholder(tf.float32,[None,10]) 20 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1])) 21 22 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) 23 tf.global_variables_initializer().run() 24 25 #保存模型对象saver 26 saver = tf.train.Saver() 27 28 #判断保存模型对象文件夹是否存在 29 if not os.path.exists('tmp/'): 30 print('i am here') 31 os.mkdir('tmp/') 32 else: 33 print("2") 34 35 36 if os.path.exists('tmp/chckpoint'): 37 saver.restore(sess,'tmp/model.ckpt') 38 correct_prediction = tf.equal(tf.arg_max(y, 1), tf.argmax(y_, 1)) 39 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 40 save_path = saver.save(sess, 'tmp/model.ckpt') 41 print("2") 42 print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels})) 43 else: 44 for i in range(1000): 45 batch_xs,batch_ys = mnist.train.next_batch(100) 46 train_step.run({x:batch_xs,y_:batch_ys}) 47 correct_prediction = tf.equal(tf.arg_max(y,1),tf.argmax(y_,1)) 48 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) 49 save_path = saver.save(sess,'tmp/model.ckpt') 50 print(accuracy.eval({x:mnist.test.images,y_:mnist.test.labels}))