zoukankan      html  css  js  c++  java
  • 扩展欧几里德算法 线性同余方程 中国剩余定理 (转载)

    链接地址:http://hi.baidu.com/%B1%BF%D0%A1%BA%A2_shw/blog/item/0676025d56a87d4afbf2c093.html

    对这位作者表示感谢

    哎呀,经过这两三天的奋斗,终于搞懂了一类问题——用扩展欧几里德算法求解线性同余方程。其实这类问题应该是比较基础也比较简单的,但我由于几乎没有一点数论的基础,所以还是难为了我不久,等现在彻底搞明白以后再看真的觉得是挺简单的,有关这类问题的题目也不是很多,我就做了3个。下面把这类问题的资料整理一下,方便以后再看。

          欧几里德算法


      欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
      定理:gcd(a,b) = gcd(b,a mod b)
      证明:a可以表示成a = kb + r,则r = a mod b
      假设d是a,b的一个公约数,则有
      d|a, d|b,而r = a - kb,因此d|r
      因此d是(b,a mod b)的公约数
      假设d 是(b,a mod b)的公约数,则
      d | b , d |r ,但是a = kb +r
      因此d也是(a,b)的公约数
      因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证
      欧几里德算法就是根据这个原理来做的,其算法用C++语言描述为:
      

            int GCD(int a,int b)

            {

                   while (b!=0) { int k=b; b=a%b; a=k; }

                  return a;

            }

     

     

     

           扩展欧几里德算法


      扩展欧几里德算法是用来在已知a, b求解一组p,q使得p * a+q * b = Gcd(a, b) (解一定存在,根据数论中的相关定理)。

         算法描述为:

            int extended_gcd(int a,int b,int &x,int &y)

            {

                 int ans,t;

                 if (b==0) { x=1; y=0; return a; }

                 else { ans=extended_gcd(b,a%b,x,y); t=x; x=y; y=t-(a/b)*y;}

                 return ans;

            }

     

      把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。


      可以这样思考:
      对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')
      由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)
      那么可以得到:
      a'x + b'y = Gcd(a', b') ===>
      bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===>
      ay +b(x - a / b*y) = Gcd(a, b)
      因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y)。

     

     

     

     

     

        线性同余方程

            

         对于方程 a*x+b*y=n;有整数解得充分必要条件是(n %(a,b)==0),这个定理这里就不证明了,数论书上都有。

     

         所以方程 a*x+b*y=n;我们可以先用扩展欧几里德算法求出一组x0,y0。也就是a*x0+b*y0=(a,b);然后两边同时除以(a,b),再乘以n。这样就得到了方程a*x0*n/(a,b)+b*y0*n/(a,b)=n;我们也就找到了方程的一个解。

     

         还有一个定理:若(a,b)=1,且x0,y0为a*x+b*y=n的一组解,则该方程的任一解可表示为:x=x0+b*t,y=y0-a*t;且对任一整数t,皆成立。(这个证明比较简单,就不写了)

     

         这样我们就可以求出方程的所有解了,但实际问题中,我们往往被要求去求最小整数解,所以我们就可以将一个特解x,t=b/(a,b),x=(x%t+t)%t;就可以了。

     

     

        方程组的情形(中国剩余定理)

     

     

         对于同余方程组:

          x=a1 (mod m1);   1

          x=a2 (mod m2);    2

          方程组有一个小于m(m1,m2的最小公倍数)的非负整数解的充分必要条件是(a1-a2)%(m1,m2)==0 ,同样利用扩展欧几里德算法。

          两式联立:a1+m1*y=a2+m2*z。

          则:a1-a2=m2*z-m1*y; 这样就可以了解出z和y,则:x=a2+m2*z;  

          现在我们将其推广到一般情形:(设m1,m2,···,mk两两互素)

          x=a1(mod m1);

         x=a2(mod m2);

          ···

          x=ak(mod mk);其在M=m1*m2*···*mk;中有唯一整数解。

          记Mi=M/mi;因为(Mi,mi)=1,故有两整数pi,qi满足Mi*pi+mi*qi=1,如果记ei=Mi*pi;那么:ei=0 (mod mj),j!=i; ei=1(mod mj),j=i;

          很明显,e1*a1+e2*a2+···+ek*ak就是方程的一个解,加减M倍后就可以得到最小非负整数解了。

          如果m1,m2,···,mk不互素,那只能两个两个求了。

          x=a1 (mod m1);  

          x=a2 (mod m2);   

          解完后,a=x; m=m1和m2的最小公倍数。即可。

  • 相关阅读:
    Trapping Rain Water
    Construct Binary Tree from Preorder and Inorder Traversal
    Flatten Binary Tree to Linked List
    Permutations II
    Unique Paths II
    Path Sum II
    Unique Binary Search Trees II
    evdev module-----uinput.py
    evdev module-----events.py
    evdev module-----device.py
  • 原文地址:https://www.cnblogs.com/bfshm/p/3773268.html
Copyright © 2011-2022 走看看