zoukankan      html  css  js  c++  java
  • 人工智能中的局部搜索算法

      在局部搜索算法中,我们不再关心从初始节点到目标节点之间的路径,而是考虑从当前节点出发,移动到它的邻近状态,直到到达合理的目标状态。相比于前面所说的无信息搜索算法和有信息搜索算法,局部搜索算法往往能以常数的空间复杂度(不用保存路径)在很大甚至无限的状态空间中找到合理解。

    爬山法

    爬山法不断向值增加的方向移动,直到到达顶峰。

    function HillClimbing(problem) returns a local maximum state
        current_state = initial_state
        loop do
        	next_state = the highest neighbor
            if (next_state is higher than current_state)
               current_state = next_state
            else
               return current_state
    

    爬山法的问题在于它只能保证到达局部最大值,却不能保证到达全局最大值。

    比如我们从C点出发,那么我们会停在局部最大值A点,因此没办法到达全局最大值B点。

    模拟退火算法

      模拟退火算法与爬山法类似,只是我们不再一味地往值增加的方向移动,而是以一定的几率容许往值减小的方向移动,从而使得我们有可能从局部最大值A点走出来,并到达全局最大值B点。
      只所以叫做模拟退火,是因为一开始这个几率相对较高,而随着时间的增加,这个几率则像温度一样慢慢减小。

    function SimulatedAnnealing () returns a solution state
    
        current_state = initial_state
        for t = 1 to infinite do
        	T = schedule(t)
            if T = 0 then
                return current_state
            next_state = a randomly selected neighbor
            E = next_state.height - current_state.height
            if E > 0 then
                current_state = next_state
            else 
                current_state = next_state with probability e^(E/T)
    

    遗传算法

      遗传算法模拟生物中的遗传过程,从初始种群开始,迭代进行一系列杂交和变异直到获得合适的种群,并从中挑选出最佳个体。

    function GeneticAlgorithm(population, fitin) returns a solution state
        inputs: population, a set of individuals
                fitness, a function that measures fitness of an individual
        
        repeat
        	new_population = empty_set
            for i = 1 to sizeof(population) do
                x = RandomSelect(population, fitness)
                y = RandomSelect(population, fitness)
                new_individual = Reproduce(x, y)
                if (a probability) then
                	new_individual = Mutate(new_individual)
                add new_individual to new_population
        until some individuals are fit enough or time has elapsed
        return the best individual in the population
    ----------------------------------------------------------------
    function Reproduce(x, y) returns a new individual
        inputs: x, y, the parents of the new individual
        
        length = Length(x)
        mutation_point = RandomSelectIn(1, length)
        new_individual = Sub(x, 1, mutation_point)
        	             + Sub(y, mutation_point, length)
        return new_individual
    
  • 相关阅读:
    MySQL基准测试--innodb_buffer_pool_instances
    MySQL参数优化:back_log
    MySQL open_files_limit相关设置
    Django权限系统auth模块详解
    2.9 go mod 之本地仓库搭建
    my40_MySQL锁概述之意向锁
    my39_InnoDB锁机制之Gap Lock、Next-Key Lock、Record Lock解析
    2.8 GO 参数传递
    my38_MySQL事务知识点零记
    my37_MGR流控对数据库性能的影响以及MGR与主从的性能对比
  • 原文地址:https://www.cnblogs.com/bgmind/p/4298165.html
Copyright © 2011-2022 走看看