zoukankan      html  css  js  c++  java
  • hdu1588---Gauss Fibonacci(矩阵,线性复发)

    根据题意:最后一步是寻求f(b) + f(k + b) + f(2 * k + b) + …+ f((n-1) * k + b)
    清除f(b) = A^b
    间A =
    1 1
    1 0
    所以sum(n - 1) = A^b(E + A^ k + A ^(2 * k) + … + A ^((n - 1) * k)
    设D = A^k
    sum(n-1) = A^b(E + D + D ^ 2 + … + D ^(n - 1))
    括号中的部分就能够二分递归求出来了
    而单个矩阵就能够用矩阵高速幂求出来

    /*************************************************************************
        > File Name: hdu1588.cpp
        > Author: ALex
        > Mail: zchao1995@gmail.com 
        > Created Time: 2015年03月12日 星期四 18时25分07秒
     ************************************************************************/
    
    #include <map>
    #include <set>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cmath>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    const double pi = acos(-1.0);
    const int inf = 0x3f3f3f3f;
    const double eps = 1e-15;
    typedef long long LL;
    typedef pair <int, int> PLL;
    
    LL mod, k, b;
    
    class MARTIX
    {
        public:
            LL mat[3][3];
            MARTIX();
            MARTIX operator * (const MARTIX &b)const;
            MARTIX operator + (const MARTIX &b)const;
            MARTIX& operator = (const MARTIX &b);
    }A, E, D;
    
    MARTIX :: MARTIX()
    {
        memset (mat, 0, sizeof(mat));
    }
    
    MARTIX MARTIX :: operator * (const MARTIX &b)const
    {
        MARTIX ret;
        for (int i = 0; i < 2; ++i)
        {
            for (int j = 0; j < 2; ++j)
            {
                for (int k = 0; k < 2; ++k)
                {
                    ret.mat[i][j] += this -> mat[i][k] * b.mat[k][j];
                    ret.mat[i][j] %= mod;
                }
            }
        }
        return ret;
    }
    
    MARTIX MARTIX :: operator + (const MARTIX &b)const
    {
        MARTIX ret;
        for (int i = 0; i < 2; ++i)
        {
            for (int j = 0; j < 2; ++j)
            {
                ret.mat[i][j] = this -> mat[i][j] + b.mat[i][j];
                ret.mat[i][j] %= mod;
            }
        }
        return ret;
    }
    
    MARTIX& MARTIX :: operator = (const MARTIX &b)
    {
        for (int i = 0; i < 2; ++i)
        {
            for (int j = 0; j < 2; ++j)
            {
                this -> mat[i][j] = b.mat[i][j];
            }
        }
        return *this;
    }
    
    MARTIX fastpow(MARTIX ret, LL n)
    {
        MARTIX ans;
        ans.mat[0][0] = ans.mat[1][1] = 1;
        while (n)
        {
            if (n & 1)
            {
                ans = ans * ret;
            }
            n >>= 1;
            ret = ret * ret;
        }
        return ans;
    }
    
    void Debug(MARTIX A)
    {
        for (int i = 0; i < 2; ++i)
        {
            for (int j = 0; j < 2; ++j)
            {
                printf("%lld ", A.mat[i][j]);
            }
            printf("
    ");
        }
    }
    
    MARTIX binseach(LL n)
    {
        if (n == 1)
        {
            return D;
        }
        MARTIX nxt = binseach(n >> 1);
        MARTIX B = fastpow(D, n / 2);
        B = B + E;
        nxt = nxt * B;
        if (n & 1)
        {
            MARTIX C = fastpow(D, n);
            nxt = nxt + C;
        }
        return nxt;
    }
    
    int main()
    {
        LL n;
        E.mat[0][0] = E.mat[1][1] = 1;
        A.mat[0][0] = A.mat[0][1] = A.mat[1][0] = 1;
    //  Debug(A);
        while (~scanf("%lld%lld%lld%lld", &k, &b, &n, &mod))
        {
            if (n == 1)
            {
                MARTIX x = fastpow(A, b);
                printf("%lld
    ", x.mat[0][1]);
                continue;
            }
            D = fastpow(A, k);
            MARTIX ans = binseach(n - 1);
            ans = ans + E;
            MARTIX base = fastpow(A, b);
            ans = base * ans;
    //      Debug(ans);
            printf("%lld
    ", ans.mat[0][1]);
        }
        return 0;
    }

    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    「Vue」nrm
    「Vue」路由
    「Vue」父子组件之间的传值及调用方法
    「Vue」vue生命周期
    「Vue」自定义指令
    「Vue」自定义按键修饰符
    「Vue」过滤器
    常用断点设置
    BUUCTF 不一样的flag writeup
    好久没有写东西,最近在看逆向相关的东西,做点记录
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/4850134.html
Copyright © 2011-2022 走看看