zoukankan      html  css  js  c++  java
  • [转]Part 3: Understanding !PTE

    http://blogs.msdn.com/b/ntdebugging/archive/2010/06/22/part-3-understanding-pte-non-pae-and-x64.aspx

    Hello, Ryan Mangipano (ryanman) again with part three of my series on understanding the output of the !PTE command. In this last installment I’ll continue our manual conversion of Virtual Addresses by converting a Non-PAE VA. Afterwards I’ll convert a VA from X64 Long Mode. Then I’ll discuss the TLB. If you haven’t read part oneand two of this series I recommend taking a looking before jumping into the rest of this article.

    Non-PAE system VA to Physical Address conversion

    In part 1 and part 2 I discussed using windbg to manually x86 PAE virtual to physical address conversion with 4KB and 2MB pages. Now I’ll mention the same thing for Non-PAE systems. The official processor manuals explain how systems not using PAE have only two level of tables instead of the three used by PAE. This fact is because PAE added the Page Directory Pointer Table. This means the CR3 register will contain a pointer to the Page Directory Table. Also note the size of the table entries will be 32-bit, not the 64-bit size observed in the PAE tables. PAE expanded the table size to allow for more bits for the purpose of allowing the addressing of more physical memory.

    The PAE bit is bit number five, which is the sixth bit due to bit numbering starting at zero. You can see PAE is not enabled on this system.

           0: kd> .formats @cr4

      Binary:  00000000 00000000 00000110 11010001

     Another method of checking this:

                   1: kd> j ((@cr4 & 0y00000000000000000000000000100000) != 0) '.echo PAE flag Enabled';'.echo PAE flag Disabled'

    PAE flag Enabled

     Now I'll use the following random virtual address which is valid:

     

    0: kd> !pte f72c5c00

    F72C5C00  - PDE at C0300F70        PTE at C03DCB14

              contains 01014963      contains 06CE7963

            pfn 1014 G-DA--KWV    pfn 6ce7 G-DA—KWV

     

    0: kd> .formats f72c5c00

      Binary:  11110111 00101100 01011100 00000000

     Let’s break it down:

     

    PD offset                        11110111 00

    Page Table Offset                       101100 0101

    Offset in the Physical Page             1100 00000000 (since it’s a even 12 bits,  just refer to it in hex as c00)

     

    0: kd> !dd @cr3 + (0y1111011100 * @@(sizeof(nt!HARDWARE_PTE)))L1

    # a07df70 01014963

     

    0: kd> !dd 1014000 + (0y1011000101 * @@(sizeof(nt!HARDWARE_PTE)))L1

    # 1014b14 06ce7963

     Now that I have the physical page base, I'll place  the last 3 hex digits (c00)  from the Virtual Address onto the address base.

     

    0: kd> !dd 6ce7c00 L4

    # 6ce7c00 00000001 c0000005 00000000 00000000

     

    0: kd> dd f72c5c00 L4

    f72c5c00  00000001 c0000005 00000000 00000000

    X64 VA to Physical Address Conversion

    Just as PAE added a third level to the non-PAE two-level system, x64 Long mode adds a fourth level to the hierarchy.  This table is called the Page-Map Level-4 (PML4 table). AMD refers to the entries in this table as PML4E (Page-Map Level-4 Entry).  Intel refers to each entry as PML4-Table Entry. Internally we refer to this as theeXtended Page directory Entry (PXE).  Regardless of how you refer to these entries they contain indexes into the PDP table (Page Directory Pointer Table).

     Here is the output of the !pte command against a 64-bit address:

                   7: kd> !pte fffffade`c24eb7c0

                                     VA fffffadec24eb7c0

    PXE @ FFFFF6FB7DBEDFA8     PPE at FFFFF6FB7DBF5BD8    PDE at FFFFF6FB7EB7B090    PTE at FFFFF6FD6F612758

    contains 0000000111800863  contains 0000000119826863  contains 0000000119839963  contains 0000000001FF6121

    pfn 111800     ---DA--KWEV  pfn 119826     ---DA--KWEV  pfn 119839     -G-DA--KWEV  pfn 1ff6       -G--A—KREV

    I'll break it down in binary and use data from the processor manuals to separate the bits

     

    7: kd> .formats fffffade`c24eb7c0

      Binary:  11111111 11111111 11111010 11011110 11000010 01001110 10110111 11000000

     

    Sign extend               11111111 11111111

    PML4 offset               11111010 1

    PDP offset                1011110 11

    PD offset                 000010 010

    Page-Table offset         01110 1011

    Physical Page Offset      0111 11000000

     

     Now that I have the numbers, I'll plug them in and find the physical address. If you are having problems following along, refer to part one of this blog and the AMD x64 System Programming manual. You should be comparing the output below to the !pte output above

     

    7: kd> !dq @cr3 + ( 0y111110101 * @@(sizeof(ntkrnlmp!HARDWARE_PTE))) L1

    #  147fa8 00000001`11800863

     

    7: kd> !dq 0x00111800000 + (  0y101111011  * @@(sizeof(ntkrnlmp!HARDWARE_PTE))) L1

    #111800bd8 00000001`19826863

     

    7: kd> !dq 0x119826000 + ( 0y000010010  * @@(sizeof(ntkrnlmp!HARDWARE_PTE))) L1

    #119826090 00000001`19839963

     

    7: kd> !dq 0x119839000 + ( 0y011101011  * @@(sizeof(ntkrnlmp!HARDWARE_PTE))) L1

    #119839758 00000000`01ff6121

     

    7: kd> !dc 1ff67c0 L4

    1ff67c0 5085ff48 48000005 68244c8b 04a8f633 H..P...H.L$h3...

     

    7: kd> dc fffffade`c24eb7c0 L4

    fffffade`c24eb7c0  5085ff48 48000005 68244c8b 04a8f633  H..P...H.L$h3...

    TLB- Translation Lookaside Buffer and Conclusion

    The CPU’s memory management unit performs these operations to translate virtual addresses to physical. Wouldn’t it be great if we could cache the virtual address to physical page information in a location that can be accessed very quickly so that the CPU doesn’t have to look this up for future references to this page?  That is just what the Translation Lookaside Buffer (TLB) does. Hopefully this will shed some light on some basic memory structures like Large Pages, Flags, and the TLB so I encourage you to read more about these topics from the following sources-

    How PAE x86 works (on MSDN): http://technet.microsoft.com/en-us/library/cc736309(WS.10).aspx

    Intel  & AMD processor manuals: http://www.intel.com/products/processor/manuals/index.htm andhttp://developer.amd.com/documentation/guides/Pages/default.aspx#manuals

    “Windows Internals, 5th Edition” Mark E. Russinovich and David A. Solomon with Alex Ionescu  -Chapter 9: Memory Management







  • 相关阅读:
    Docker外包团队 2019年3月更新 企业如何使用Docker
    2019年3月更新 技术分享 WPF基本界面制作
    Winform外包团队 项目案例展示
    WinForm外包公司 WInform外包项目监控案例展示
    H5外包团队 android视频压缩,使用ffmpeg方案
    为什么选择Go语言 GO语言都能做什么产品
    Go外包 Go语言外包 Golang外包商 浅谈Go的全局变量和生命周期
    SaaS外包商 承接SaaS产品开发 Software-as-a-Service(软件即服务)
    北京U3D外包团队 UE4红军抗战案例 Unity3D红军抗战案例 UE4下载和安装虚幻4游戏引擎
    Unity3D外包 团队更新一下UE4和Unity3D案例
  • 原文地址:https://www.cnblogs.com/bianchengnan/p/6231600.html
Copyright © 2011-2022 走看看