zoukankan      html  css  js  c++  java
  • hdu-4289.control(最小割 + 拆点)

    Control

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5636    Accepted Submission(s): 2289


    Problem Description
      You, the head of Department of Security, recently received a top-secret information that a group of terrorists is planning to transport some WMD 1 from one city (the source) to another one (the destination). You know their date, source and destination, and they are using the highway network.
      The highway network consists of bidirectional highways, connecting two distinct city. A vehicle can only enter/exit the highway network at cities only.
      You may locate some SA (special agents) in some selected cities, so that when the terrorists enter a city under observation (that is, SA is in this city), they would be caught immediately.
      It is possible to locate SA in all cities, but since controlling a city with SA may cost your department a certain amount of money, which might vary from city to city, and your budget might not be able to bear the full cost of controlling all cities, you must identify a set of cities, that:
      * all traffic of the terrorists must pass at least one city of the set.
      * sum of cost of controlling all cities in the set is minimal.
      You may assume that it is always possible to get from source of the terrorists to their destination.
    ------------------------------------------------------------
    1 Weapon of Mass Destruction
     
    Input
      There are several test cases.
      The first line of a single test case contains two integer N and M ( 2 <= N <= 200; 1 <= M <= 20000), the number of cities and the number of highways. Cities are numbered from 1 to N.
      The second line contains two integer S,D ( 1 <= S,D <= N), the number of the source and the number of the destination.
      The following N lines contains costs. Of these lines the ith one contains exactly one integer, the cost of locating SA in the ith city to put it under observation. You may assume that the cost is positive and not exceeding 107.
      The followingM lines tells you about highway network. Each of these lines contains two integers A and B, indicating a bidirectional highway between A and B.
      Please process until EOF (End Of File).
     
    Output
      For each test case you should output exactly one line, containing one integer, the sum of cost of your selected set.
      See samples for detailed information.
     
    Sample Input
    5 6 5 3 5 2 3 4 12 1 5 5 4 2 3 2 4 4 3 2 1
     
    Sample Output
    3
     
    Source
    这应该是比较裸的一道最小割了,分割两城市,显而易见的最小割啦,拆点就行了...
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    const int maxn = 200 + 5, maxm = 20000 + 5, inf = 0x3f3f3f3f;
    struct Edge {
        int to, cap, flow, next;
    } edge[maxm << 2];
    
    int tot, head[maxn << 1], que[maxn << 1], dep[maxn << 1], cur[maxn << 1], sta[maxn << 1];
    
    void init() {
        tot = 2;
        memset(head, -1, sizeof head);
    }
    
    void addedge(int u, int v, int w, int rw = 0) {
        edge[tot].to = v; edge[tot].cap = w; edge[tot].flow = 0;
        edge[tot].next = head[u]; head[u] = tot ++;
        edge[tot].to = u; edge[tot].cap = rw; edge[tot].flow = 0;
        edge[tot].next = head[v]; head[v] = tot ++;
    }
    
    bool bfs(int s, int t, int n) {
        int front = 0, tail = 0;
        memset(dep, -1, sizeof dep[0] * (n + 1));
        dep[s] = 0;
        que[tail ++] = s;
        while(front < tail) {
            int u = que[front ++];
            for(int i = head[u]; ~i; i = edge[i].next) {
                int v = edge[i].to;
                if(edge[i].cap > edge[i].flow && dep[v] == -1) {
                    dep[v] = dep[u] + 1;
                    if(v == t) return true;
                    que[tail ++] = v;
                }
            }
        }
        return false;
    }
    
    int dinic(int s,int t, int n) {
        int maxflow = 0;
        while(bfs(s, t, n)) {
            for(int i = 0; i <= n; i ++) cur[i] = head[i];
            int u = s, tail = 0;
            while(cur[s] != -1) {
                if(u == t) {
                    int tp = inf;
                    for(int i = tail - 1; i >= 0; i --)
                        tp = min(tp, edge[sta[i]].cap - edge[sta[i]].flow);
                    maxflow += tp;
                    for(int i = tail - 1; i >= 0; i --) {
                        edge[sta[i]].flow += tp;
                        edge[sta[i] ^ 1].flow -= tp;
                        if(edge[sta[i]].cap - edge[sta[i]].flow == 0) tail = i;
                    }
                    u = edge[sta[tail] ^ 1].to;
                }
                else if(cur[u] != -1 && edge[cur[u]].cap > edge[cur[u]].flow && dep[u] + 1 == dep[edge[cur[u]].to]) {
                    sta[tail ++] = cur[u];
                    u = edge[cur[u]].to;
                }
                else {
                    while(u != s && cur[u] == -1)
                        u = edge[sta[-- tail] ^ 1].to;
                    cur[u] = edge[cur[u]].next;
                } 
            }
        }
        return maxflow;
    }
    
    int main() {
        int n, m, s, t, u, v, cost;
        while(~scanf("%d %d", &n, &m)) {
            init();
            scanf("%d %d", &s, &t);
            for(int i = 1; i <= n; i ++) {
                scanf("%d", &cost);
                addedge(i, n + i, cost);
            }
            for(int i = 1; i <= m; i ++) {
                scanf("%d %d", &u, &v);
                addedge(u + n, v, inf);
                addedge(v + n, u, inf);
            }
            printf("%d
    ", dinic(s, t + n, 2 * n));
        }
        return 0;
    }
  • 相关阅读:
    滑动窗口算法-2
    滑动窗口算法-1
    工作中缓存使用重点
    QPS的计算方法[转载]
    springAop
    spring配置详述与springboot
    LRU最少使用
    图片压缩
    Javassist使用[转载]
    [转]关于Spring事务嵌套回滚的一些测试总结
  • 原文地址:https://www.cnblogs.com/bianjunting/p/11403372.html
Copyright © 2011-2022 走看看