1010 Radix (25分)
Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is yes
, if 6 is a decimal number and 110 is a binary number.
Now for any pair of positive integers N1 and N2, your task is to find the radix of one number while that of the other is given.
Input Specification:
Each input file contains one test case. Each case occupies a line which contains 4 positive integers:
N1 N2 tag radix
Here N1
and N2
each has no more than 10 digits. A digit is less than its radix and is chosen from the set { 0-9, a
-z
} where 0-9 represent the decimal numbers 0-9, and a
-z
represent the decimal numbers 10-35. The last number radix
is the radix of N1
if tag
is 1, or of N2
if tag
is 2.
Output Specification:
For each test case, print in one line the radix of the other number so that the equation N1
= N2
is true. If the equation is impossible, print Impossible
. If the solution is not unique, output the smallest possible radix.
Sample Input 1:
6 110 1 10
Sample Output 1:
2
Sample Input 2:
1 ab 1 2
Sample Output 2:
Impossible
/* 本题大意:给出两个任意进制的数字,让你判断将他们都转换为十进制后是否相等。 注意其中一个数字和他的进制已经给出,另一个数只给出数某种进制下的编码,让 你求出这个数的最小进制数,使得这两个数字在十进制下相等。 思路:题目给出2 ~ 36 其实是一个坑,答案进制数有可能超大,但其范围在 (这个数中最大的数字 + 1,已知数字 + 1)这个范围内,知道范围,求最小值 我们直接二分答案就行了。 */ #include <iostream> #include <string> #include <cmath> #include <algorithm> #define mid ((l + r) >> 1) using namespace std; typedef long long ll; ll inf = 8e18; string s1, s2; ll n1, n2; ll quickly_pow(ll a, int b) { ll ans = 1; while(b) { if(b & 1) { ans *= a; } a *= a; b >>= 1; } return ans; } ll get_decimal(string s, ll radix) { ll ans = 0; int len = s.size(); for(int i = len - 1; i >= 0; i --) { if(s[i] > '9') ans += (s[i] - 'a' + 10) * quickly_pow(radix, len - i - 1); else ans += (s[i] - '0') * quickly_pow(radix, len - i - 1); if(ans > n1 || ans < 0) return n1 + 1; } return ans; } int main() { int tag, radix; while(cin >> s1 >> s2 >> tag >> radix) { n1 = inf; if(tag == 2) swap(s1, s2); n1 = get_decimal(s1, radix); char c = *max_element(s2.begin(), s2.end()); ll l = c < '9' ? (c - '0' + 1) : (c - 'a' + 11), r = n1 + 1, ans = inf, temp; while(l <= r) { temp = get_decimal(s2, mid); if(temp > n1) r = mid - 1; else if(temp < n1) l = mid + 1; else { ans = min(ans, mid); r = mid - 1; } } if(ans == inf) cout << "Impossible" << endl; else cout << ans << endl; } return 0; }