zoukankan      html  css  js  c++  java
  • 人工鱼群算法-python实现

    AFSIndividual.py

     1 import numpy as np
     2 import ObjFunction
     3 import copy
     4 
     5 
     6 class AFSIndividual:
     7 
     8     """class for AFSIndividual"""
     9 
    10     def __init__(self, vardim, bound):
    11         '''
    12         vardim: dimension of variables
    13         bound: boundaries of variables
    14         '''
    15         self.vardim = vardim
    16         self.bound = bound
    17 
    18     def generate(self):
    19         '''
    20         generate a rondom chromsome
    21         '''
    22         len = self.vardim
    23         rnd = np.random.random(size=len)
    24         self.chrom = np.zeros(len)
    25         self.velocity = np.random.random(size=len)
    26         for i in xrange(0, len):
    27             self.chrom[i] = self.bound[0, i] + 
    28                 (self.bound[1, i] - self.bound[0, i]) * rnd[i]
    29         self.bestPosition = np.zeros(len)
    30         self.bestFitness = 0.
    31 
    32     def calculateFitness(self):
    33         '''
    34         calculate the fitness of the chromsome
    35         '''
    36         self.fitness = ObjFunction.GrieFunc(
    37             self.vardim, self.chrom, self.bound)

    AFS.py

      1 import numpy as np
      2 from AFSIndividual import AFSIndividual
      3 import random
      4 import copy
      5 import matplotlib.pyplot as plt
      6 
      7 
      8 class ArtificialFishSwarm:
      9 
     10     """class for  ArtificialFishSwarm"""
     11 
     12     def __init__(self, sizepop, vardim, bound, MAXGEN, params):
     13         '''
     14         sizepop: population sizepop
     15         vardim: dimension of variables
     16         bound: boundaries of variables, 2*vardim
     17         MAXGEN: termination condition
     18         params: algorithm required parameters, it is a list which is consisting of[visual, step, delta, trynum]
     19         '''
     20         self.sizepop = sizepop
     21         self.vardim = vardim
     22         self.bound = bound
     23         self.MAXGEN = MAXGEN
     24         self.params = params
     25         self.population = []
     26         self.fitness = np.zeros((self.sizepop, 1))
     27         self.trace = np.zeros((self.MAXGEN, 2))
     28         self.lennorm = 6000
     29 
     30     def initialize(self):
     31         '''
     32         initialize the population of afs
     33         '''
     34         for i in xrange(0, self.sizepop):
     35             ind = AFSIndividual(self.vardim, self.bound)
     36             ind.generate()
     37             self.population.append(ind)
     38 
     39     def evaluation(self, x):
     40         '''
     41         evaluation the fitness of the individual
     42         '''
     43         x.calculateFitness()
     44 
     45     def forage(self, x):
     46         '''
     47         artificial fish foraging behavior
     48         '''
     49         newInd = copy.deepcopy(x)
     50         found = False
     51         for i in xrange(0, self.params[3]):
     52             indi = self.randSearch(x, self.params[0])
     53             if indi.fitness > x.fitness:
     54                 newInd.chrom = x.chrom + np.random.random(self.vardim) * self.params[1] * self.lennorm * (
     55                     indi.chrom - x.chrom) / np.linalg.norm(indi.chrom - x.chrom)
     56                 newInd = indi
     57                 found = True
     58                 break
     59         if not (found):
     60             newInd = self.randSearch(x, self.params[1])
     61         return newInd
     62 
     63     def randSearch(self, x, searLen):
     64         '''
     65         artificial fish random search behavior
     66         '''
     67         ind = copy.deepcopy(x)
     68         ind.chrom += np.random.uniform(-1, 1,
     69                                        self.vardim) * searLen * self.lennorm
     70         for j in xrange(0, self.vardim):
     71             if ind.chrom[j] < self.bound[0, j]:
     72                 ind.chrom[j] = self.bound[0, j]
     73             if ind.chrom[j] > self.bound[1, j]:
     74                 ind.chrom[j] = self.bound[1, j]
     75         self.evaluation(ind)
     76         return ind
     77 
     78     def huddle(self, x):
     79         '''
     80         artificial fish huddling behavior
     81         '''
     82         newInd = copy.deepcopy(x)
     83         dist = self.distance(x)
     84         index = []
     85         for i in xrange(1, self.sizepop):
     86             if dist[i] > 0 and dist[i] < self.params[0] * self.lennorm:
     87                 index.append(i)
     88         nf = len(index)
     89         if nf > 0:
     90             xc = np.zeros(self.vardim)
     91             for i in xrange(0, nf):
     92                 xc += self.population[index[i]].chrom
     93             xc = xc / nf
     94             cind = AFSIndividual(self.vardim, self.bound)
     95             cind.chrom = xc
     96             cind.calculateFitness()
     97             if (cind.fitness / nf) > (self.params[2] * x.fitness):
     98                 xnext = x.chrom + np.random.random(
     99                     self.vardim) * self.params[1] * self.lennorm * (xc - x.chrom) / np.linalg.norm(xc - x.chrom)
    100                 for j in xrange(0, self.vardim):
    101                     if xnext[j] < self.bound[0, j]:
    102                         xnext[j] = self.bound[0, j]
    103                     if xnext[j] > self.bound[1, j]:
    104                         xnext[j] = self.bound[1, j]
    105                 newInd.chrom = xnext
    106                 self.evaluation(newInd)
    107                 # print "hudding"
    108                 return newInd
    109             else:
    110                 return self.forage(x)
    111         else:
    112             return self.forage(x)
    113 
    114     def follow(self, x):
    115         '''
    116         artificial fish following behivior
    117         '''
    118         newInd = copy.deepcopy(x)
    119         dist = self.distance(x)
    120         index = []
    121         for i in xrange(1, self.sizepop):
    122             if dist[i] > 0 and dist[i] < self.params[0] * self.lennorm:
    123                 index.append(i)
    124         nf = len(index)
    125         if nf > 0:
    126             best = -999999999.
    127             bestIndex = 0
    128             for i in xrange(0, nf):
    129                 if self.population[index[i]].fitness > best:
    130                     best = self.population[index[i]].fitness
    131                     bestIndex = index[i]
    132             if (self.population[bestIndex].fitness / nf) > (self.params[2] * x.fitness):
    133                 xnext = x.chrom + np.random.random(
    134                     self.vardim) * self.params[1] * self.lennorm * (self.population[bestIndex].chrom - x.chrom) / np.linalg.norm(self.population[bestIndex].chrom - x.chrom)
    135                 for j in xrange(0, self.vardim):
    136                     if xnext[j] < self.bound[0, j]:
    137                         xnext[j] = self.bound[0, j]
    138                     if xnext[j] > self.bound[1, j]:
    139                         xnext[j] = self.bound[1, j]
    140                 newInd.chrom = xnext
    141                 self.evaluation(newInd)
    142                 # print "follow"
    143                 return newInd
    144             else:
    145                 return self.forage(x)
    146         else:
    147             return self.forage(x)
    148 
    149     def solve(self):
    150         '''
    151         evolution process for afs algorithm
    152         '''
    153         self.t = 0
    154         self.initialize()
    155         # evaluation the population
    156         for i in xrange(0, self.sizepop):
    157             self.evaluation(self.population[i])
    158             self.fitness[i] = self.population[i].fitness
    159         best = np.max(self.fitness)
    160         bestIndex = np.argmax(self.fitness)
    161         self.best = copy.deepcopy(self.population[bestIndex])
    162         self.avefitness = np.mean(self.fitness)
    163         self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
    164         self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
    165         print("Generation %d: optimal function value is: %f; average function value is %f" % (
    166             self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
    167         while self.t < self.MAXGEN - 1:
    168             self.t += 1
    169             # newpop = []
    170             for i in xrange(0, self.sizepop):
    171                 xi1 = self.huddle(self.population[i])
    172                 xi2 = self.follow(self.population[i])
    173                 if xi1.fitness > xi2.fitness:
    174                     self.population[i] = xi1
    175                     self.fitness[i] = xi1.fitness
    176                 else:
    177                     self.population[i] = xi2
    178                     self.fitness[i] = xi2.fitness
    179             best = np.max(self.fitness)
    180             bestIndex = np.argmax(self.fitness)
    181             if best > self.best.fitness:
    182                 self.best = copy.deepcopy(self.population[bestIndex])
    183             self.avefitness = np.mean(self.fitness)
    184             self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
    185             self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
    186             print("Generation %d: optimal function value is: %f; average function value is %f" % (
    187                 self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
    188 
    189         print("Optimal function value is: %f; " % self.trace[self.t, 0])
    190         print "Optimal solution is:"
    191         print self.best.chrom
    192         self.printResult()
    193 
    194     def distance(self, x):
    195         '''
    196         return the distance array to a individual
    197         '''
    198         dist = np.zeros(self.sizepop)
    199         for i in xrange(0, self.sizepop):
    200             dist[i] = np.linalg.norm(x.chrom - self.population[i].chrom) / 6000
    201         return dist
    202 
    203     def printResult(self):
    204         '''
    205         plot the result of afs algorithm
    206         '''
    207         x = np.arange(0, self.MAXGEN)
    208         y1 = self.trace[:, 0]
    209         y2 = self.trace[:, 1]
    210         plt.plot(x, y1, 'r', label='optimal value')
    211         plt.plot(x, y2, 'g', label='average value')
    212         plt.xlabel("Iteration")
    213         plt.ylabel("function value")
    214         plt.title("Artificial Fish Swarm algorithm for function optimization")
    215         plt.legend()
    216         plt.show()

     运行程序:

    1 if __name__ == "__main__":
    2 
    3     bound = np.tile([[-600], [600]], 25)
    4     afs = AFS(60, 25, bound, 500, [0.001, 0.0001, 0.618, 40])
    5     afs.solve()

    ObjFunction见简单遗传算法-python实现

  • 相关阅读:
    Nodejs chrome 调试node-inspector
    Nodejs 文件修改自动重启扩展
    PHP post & get请求
    mysql 忘记root密码
    Linux安装mysql
    Linux 安装reids
    技术 | TypeScript
    秦涛:深度学习的五个挑战和其解决方案
    人脸检测与识别的趋势和分析
    370 门免费编程与计算机科学在线课程
  • 原文地址:https://www.cnblogs.com/biaoyu/p/4857911.html
Copyright © 2011-2022 走看看