zoukankan      html  css  js  c++  java
  • poj1442 Black Box 栈和优先队列

       题意:有n个数,按顺序加入,求加入前Gi个数时第i个最小的数是多少

    思路:这里需要用到STL里的优先队列priority_queue,建一个大堆和一个小堆,若想在一个无序的序列里找第n个小的数,可以先把一个序列的n-1个数放入大堆(即假设这n-1个数是该序列里最小的),然后向小堆里push数,若小堆头元素<大堆头元素(即最小的元素比最大的元素大,说明大堆里的数还不是最小的),则交换两个数。
    难点:这里如果只用一个小堆的话会超时;另外每输入的一个m数,要查询的最小的数正好是第i++个,即这里每输出一个数就把该数存入大堆里,正好使大堆里数的个数不断++(由0个不断增加),以方便下一次查询第i++个小的。





    Black Box
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 7205   Accepted: 2930

    Description

    Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions: 

    ADD (x): put element x into Black Box; 
    GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending. 

    Let us examine a possible sequence of 11 transactions: 

    Example 1 

    N Transaction i Black Box contents after transaction Answer
    (elements are arranged by non-descending)
    1 ADD(3) 0 3
    2 GET 1 3 3
    3 ADD(1) 1 1, 3
    4 GET 2 1, 3 3
    5 ADD(-4) 2 -4, 1, 3
    6 ADD(2) 2 -4, 1, 2, 3
    7 ADD(8) 2 -4, 1, 2, 3, 8
    8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8
    9 GET 3 -1000, -4, 1, 2, 3, 8 1
    10 GET 4 -1000, -4, 1, 2, 3, 8 2
    11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8

    It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type. 


    Let us describe the sequence of transactions by two integer arrays: 


    1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2). 

    2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6). 

    The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence. 


    Input

    Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

    Output

    Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

    Sample Input

    7 4
    3 1 -4 2 8 -1000 2
    1 2 6 6

    Sample Output

    3
    3
    1
    2

     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <iostream>
     4 #include <algorithm>
     5 #include <cstdio>
     6 #include <cstring>
     7 #include <cmath>
     8 #include <stack>
     9 #include <queue>
    10 #include <functional>
    11 #include <vector>
    12 #include <map>
    13 //priority_queue<int> pq;
    14 //queue<int >q;
    15 using namespace std;
    16 
    17 #define M 0x0f0f0f0f
    18 #define min(a,b) (a>b?b:a)
    19 #define max(a,b) (a>b?a:b)
    20 int main()
    21 {
    22     int m,n;
    23     int i,j,b,c,t;
    24     int a[30005];
    25     scanf("%d %d",&n,&m);
    26     priority_queue< int,vector<int>,greater<int> >small;
    27     priority_queue< int>large;
    28     for(i=0; i<n; i++)
    29         scanf("%d",&a[i]);
    30     c=0;
    31     for(i=0; i<m; i++)
    32     {
    33         scanf("%d",&b);
    34         while(c<b)
    35         {
    36             small.push(a[c]);
    37             if(!large.empty()&&small.top()<large.top())
    38             {
    39                 t=small.top();
    40                 small.pop();
    41                 small.push(large.top());
    42                 large.pop();
    43                 large.push(t);
    44             }
    45             c++;
    46         }
    47         printf("%d\n",small.top());
    48         //精华!!!!
    49         large.push(small.top());//每次i++,让large里放一个数,使得以后每次比较时
    50         small.pop();           //保证small里的第一个数是第i个最小的!!!!!
    51     }
    52     return 0;
    53 }
    View Code
     
  • 相关阅读:
    打开任务管理器的hang住的进程直接右键抓取dmp文件
    Excel匯入匯出整理
    ShellExecute 命令行参数最长2068
    一个判断是否为质数的正则表达式
    visualstudio 比较和merge工具命令行配置
    C++ 螺旋队列
    寻找连通线,参考八后算法递归,可用于验证码去除连续干扰线
    DES 加解密
    记个地址
    CF1383C String Transformation 2 题解
  • 原文地址:https://www.cnblogs.com/bibier/p/3880915.html
Copyright © 2011-2022 走看看