zoukankan      html  css  js  c++  java
  • P1525 关押罪犯 题解

    CSDN同步

    原题链接

    简要题意:

    给定若干组关系,第 (i) 组关系形如 “(x) 号罪犯和 (y) 号罪犯有 (z) 的矛盾”。现在共有两个监狱,在同一个监狱即会产生矛盾。问最小矛盾值。

    显然,考虑 并查集 维护。

    先按 (z) 从大到小排序,考虑一对对检验,不合法退出即可。

    本题我们要维护 不等关系,即 (x ot = y) ,不能满足则答案为 (z).

    不等关系如何维护?可以考虑一个 (2) 倍空间的方法.

    显然,本题中,如果 (a ot = b , b ot = c),则 (a=c)(a,b,c) 为某罪犯关押的监狱编号且 (in (0,1))),所以 (2) 倍空间即可。(几个监狱就几倍)

    考虑对于每组 (x,y),本着 敌人的敌人是朋友 的原则,用(f) 表示 和自己一个监狱的集合,那么:

    对于每组 (x,y),用 (f_x = f_y)(f_{x+n} = f_{y+n}) 表示 当且 (x,y) 在同一个监狱。可以理解一下:(f_x = f_y) 是显然,(f_{x+n} = f_{y+n}) 意为,两个人 同时和另一个人不在一个监狱,根据上面 (a,b,c) 的性质,可得两个人也是同一个监狱

    那么如何维护呢?显然,只要将 (x)(y+n) 放在同一个监狱,(y)(x+n) 放在同一个监狱,这样就解决了问题。

    那么你问了:这样要枚举整个集合,怎么办?

    我会平衡树!我会莫队!我会队列!我会 ( ext{set})

    不得不说,如果你给每个节点开 ( ext{set}) 的话,显然 (O(n^2)) 空间等着你。

    所以,可以发现 (f_x) 实际上记得是 (x) 同一个监狱的首领,而合并,查询等操作均为 并查集 维护操作。

    综上可以通过。

    时间复杂度:(O(n log n)).(显然并查集常数 (alpha) 不如排序多出的 (log n) 大,忽略不计)

    实际得分:(100pts).

    #pragma GCC optimize(2)
    #include<bits/stdc++.h>
    using namespace std;
    
    const int N=1e5+1;
    
    inline int read(){char ch=getchar(); int f=1; while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
    	int x=0; while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar(); return x*f;}
    
    inline void write(int x) {
    	if(x<0) {putchar('-');write(-x);return;}
    	if(x<10) {putchar(char(x%10+'0'));return;}
    	write(x/10);putchar(char(x%10+'0'));
    }
    
    struct data {
    	int x,y,z;
    } a[N];
    int n,m,f[N];
    
    inline bool cmp(data u,data v) {
    	return u.z>v.z;
    } //排序
    
    inline int find(int x) {return f[x]==x?x:f[x]=find(f[x]);} //查询
    
    int main() {
    	n=read(),m=read();
    	for(int i=1;i<=m;i++) a[i].x=read(),a[i].y=read(),a[i].z=read();
    	sort(a+1,a+1+m,cmp);
    	int l=1,r=n,ans;
    	for(int i=1;i<=(n<<1);i++) f[i]=i;
    	for(int i=1;i<=m+1;i++) { //做到 m+1 是因为如果矛盾值为 0 则 i=m+1 时处理
    		int x=a[i].x,y=a[i].y,z=a[i].z;
    		if(find(x)==find(y) || find(x+n)==find(y+n)) {printf("%d
    ",z);return 0;}
    		f[f[x+n]]=f[y]; f[f[x]]=f[y+n]; //合并
    	}
    	return 0;
    }
    
    
    
  • 相关阅读:
    Git与GitHub的基本使用
    HTML&CSS基础-外边框
    HTML&CSS基础-内边框
    SHELL脚本编程变量输入
    GoLang基础数据类型-切片(slice)详解
    GoLang基础数据类型--->数组(array)详解
    SHELL脚本编程的运算符
    SHELL脚本编程变量详解
    HTML&CSS基础-边框简写属性
    GoLang基础数据类型--->字符串处理大全
  • 原文地址:https://www.cnblogs.com/bifanwen/p/12862903.html
Copyright © 2011-2022 走看看