分区
Hive分区是指按照数据表的某列或某些列分为多个区,区从形式上可以理解为文件夹,这样可以实现取数据的时候,某个分区取出来的数据就是所需要的分区数据。
常用的分区字段有:按时间分区,按业务分区等。
#创建分区表
create table t1 (
id int,
name string,
age int
)
partitioned by (pdate string)
row format delimited fields terminated by ' 01'
;
常用命令:
查看分区数据:
select * from t1 where pdate='2020-01-01';
查看有哪些分区:
show partitions t1;
向分区插入数据:
insert overwrite table t1 partition(pdate='2020-01-01')
select * from xxx
;
分桶
Hive 分桶是比分区更细粒度的数据划分,可以指定分桶表的某一列,让该列数据按照哈希取模的方式随机、均匀地分发到各个桶文件中。
因为分桶操作需要根据某一列具体数据来进行哈希取模操作,故指定的分桶列必须基于表中的某一列(字段)。分桶改变了数据的存储方式,它会把哈希取模相同或者在某一区间的数据行放在同一个桶文件中。
如此一来便可提高查询效率,比如我们要对两张在同一列上进行了分桶操作的表进行JOIN操作的时候,只需要对保存相同列值的桶进行JOIN操作即可。同时分桶也可以提高采样率。
分桶表的好处:
获得更高的查询处理效率:桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
使取样(sampling)更高效:在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。
#常用指令:
#创建分桶表
create table t2(
id int,
name string
)
clustered by (id) sorted by(id) into 4 buckets
;
查看分桶表:
dfs -ls /user/hive/warehouse/bucketed_users;
文件结构如下所示:
/user/hive/warehouse/b_table1/000000_0
/user/hive/warehouse/b_table1/000001_0
/user/hive/warehouse/b_table1/000002_0
/user/hive/warehouse/b_table1/000003_0
动态分区表
对动态分区表写入数据时,要开启允许动态分区写入。
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nostrict;