Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
解题思路:使用动态规划法。当我们计算第i层的数到底层的最小和时,如果我们知道第i+1层的数到底层最小的和就好算了。即minsum[i][j]=triangle[i]+min( minsum[i+1][j] , minsum[i+1][j+1] );从底层向顶层逐层计算,就能得到最终结果。
本文使用大小为n的数组d记录每一层的结果,达到了O(n)的空间复杂度要求。
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { int s = triangle.size(); if(s != (triangle[s-1].size())) return -1; if(s==1) return triangle[0][0]; int *d = new int[s]; int i,j; for(i=0;i<s;i++) d[i]=triangle[s-1][i]; for(i=s-2;i>=0;i--) { for(j=0;j<=i;j++) { d[j]=triangle[i][j]+min(d[j],d[j+1]); } } return d[0]; } };