zoukankan      html  css  js  c++  java
  • Triangle leetcode

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    For example, given the following triangle

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Note:
    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    解题思路:使用动态规划法。当我们计算第i层的数到底层的最小和时,如果我们知道第i+1层的数到底层最小的和就好算了。即minsum[i][j]=triangle[i]+min( minsum[i+1][j] , minsum[i+1][j+1] );从底层向顶层逐层计算,就能得到最终结果。

     

    本文使用大小为n的数组d记录每一层的结果,达到了O(n)的空间复杂度要求。

    class Solution {
    public:
        int minimumTotal(vector<vector<int> > &triangle) {
            int s = triangle.size();
            if(s != (triangle[s-1].size()))
            	return -1;
           	if(s==1)
           		return triangle[0][0];
            int *d = new int[s];
            int i,j;
            for(i=0;i<s;i++)
            	d[i]=triangle[s-1][i];
           	for(i=s-2;i>=0;i--)
           	{
           		for(j=0;j<=i;j++)
           		{
        		   	d[j]=triangle[i][j]+min(d[j],d[j+1]);
        	   	}	
           	}
           	return d[0]; 
        }
    };
  • 相关阅读:
    UVALive4727:jump
    UVALive
    UVA11795 Mega Man's Mission
    UVA4731:Cellular Network
    UVA11404:Palindromic Subsequence
    设计思路
    阅读计划
    上课未完成代码原因
    《人月神话》读后感
    《软件工程》第十一章总结
  • 原文地址:https://www.cnblogs.com/bigbigtree/p/3890132.html
Copyright © 2011-2022 走看看