归并排序(Merging Sort)就是利用归并的思想来实现的排序方法。它的原理是假设初始序列含有n个记录,则可以看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,再两两归并,... ,如此反复,直至得到一个长度为n的有序序列为止,这种排序方法称为2路归并排序。
核心代码(C实现)
void Merge(int arr[], int low, int high) { int begin1; int end1; int begin2; int end2; int i; int * pTemp = NULL; if ((NULL == arr) || (low >= high)) { return; } pTemp = (int *)malloc(sizeof(int)*(high-low+1)); begin1 = low; end1 = (low+high)/2; begin2 = end1+1; end2 = high; i = 0; while(begin1<=end1 && begin2<=end2) { if(arr[begin1]<arr[begin2]) { pTemp[i] = arr[begin1]; ++begin1; } else { pTemp[i] = arr[begin2]; ++begin2; } ++i; } //将剩余元素放入数组 while(begin1 <= end1) { pTemp[i] = arr[begin1]; ++begin1; ++i; } while(begin2 <= end2) { pTemp[i] = arr[begin2]; ++begin2; ++i; } //元素放回原数组 for(i=0; i<high-low+1; ++i) { arr[low+i] = pTemp[i]; } free(pTemp); pTemp = NULL; } void MergeSort(int arr[], int low, int high) { int mid; if ((NULL == arr) || (low >= high)) { return; } mid = (low+high)/2; //先拆分 MergeSort(arr, low, mid); MergeSort(arr, mid+1, high); //合并 Merge(arr, low, high); }
核心代码(C++实现)
#include <iostream> template <typename T> void merge(T array[], int low, int high) { if ((NULL == array) || low >= high) { return; } int* pTempArr = new int[high-low+1]; int begin1 = low; int end1 = (low + high)/2; int begin2 = end1 + 1; int end2 = high; int index = 0; while ((begin1 <= end1) && (begin2 <= end2)) { if (array[begin1] < array[begin2]) { pTempArr[index] = array[begin1]; ++begin1; } else { pTempArr[index] = array[begin2]; ++begin2; } ++index; } while (begin1 <= end1) { pTempArr[index] = array[begin1]; ++begin1; ++index; } while (begin2 <= end2) { pTempArr[index] = array[begin2]; ++begin2; ++index; } int length = high-low+1; for (index = 0; index < length; ++index) { array[low+index] = pTempArr[index]; } if (pTempArr != NULL) { delete pTempArr; pTempArr = NULL; } } void mergeSort(int array[], int low, int high) { if ((NULL == array) || (low >= high)) { return; } int mid = (low + high)/2; mergeSort(array, low, mid); mergeSort(array, mid+1, high); merge(array, low, high); } #if 0 void mergeSort(arr, 0, 8) { mid = 4; mergeSort(arr, 0, 4) { mergeSort(arr, 0, 2) { mergeSort(arr, 0, 1) { mergeSort(arr, 0, 0) { return; // 100 } mergeSort(arr, 1, 1) { return; // 2 } merge(); // 2, 100 } mergeSort(arr, 2, 2) { return; // 32 } merge(); // 2, 32, 100 } mergeSort(arr, 3, 4) { mergeSort(arr, 3, 3) { return; // 66 } mergeSort(arr, 4, 4) { return; // 78 } merge(); // 66, 78 } merge(); // 2, 32, 66, 78, 100 } mergeSort(arr, 5, 8) { mergeSort(arr, 5, 6) { mergeSort(arr, 5, 5) { return; // 500 } mergeSort(arr, 6, 6) { return; // -23 } merge(); // -23, 500 } mergeSort(arr, 7, 8) { mergeSort(arr, 7, 7) { return; // -98 } mergeSort(arr, 8, 8) { return; // 123 } merge(); // -98, 123 } merge(); // -98, -23, 123, 500 } merge(); // -98, -23, 2, 32, 66, 78, 100, 123, 500 } #endif void print(int array[], int length) { if ((NULL == array) || length < 1) { return; } for (int index = 0; index < length; ++index) { std::cout << array[index] << " "; } } int main() { int arr[] = { 100, 2, 32, 66, 78, 500, -23, -98, 123 }; int len = sizeof(arr)/sizeof(arr[0]); mergeSort(arr, 0, len-1); print(arr, len); std::cout << std::endl; return 0; }
算法分析:
最好时间复杂度:O(nlog2(n))
平均时间复杂度:O(nlog2(n))
最坏时间复杂度:O(nlog2(n))
空间复杂度:O(n+log2(n))
稳定性:稳定