zoukankan      html  css  js  c++  java
  • 学习Spark——那些让你精疲力尽的坑

    这一个月我都干了些什么……
    工作上,还是一如既往的写bug并不亦乐乎的修bug。学习上,最近看了一些非专业书籍,时常在公众号(JackieZheng)上写点小感悟,我刚稍稍瞄了下,最近五篇居然都跟技术无关,看来我与本行业已经是渐行渐远了。
    所以,趁着这篇博客,重拾自己,认清自己,要时刻谨记我是一名码农。不过,摸着良心说,最近的技术方面也是有所感悟和积累的,比如如何写好设计文档,如何使用延时队列,如何使用防刷技术等等。当然了,今天我们还是沿着“学习Spark”这条路继续走下去。


    上篇主要介绍了在Mac下如何下载安装Hadoop、Scala和Spark并成功启动环境。文章结尾庆幸没有遇到大坑,事实证明不是没有遇到,只是时间还没到,这篇就介绍下自己遇到的各种坑。我不知道各位是否遇到过并能轻松解决,反正我是被这些小问题搞得精疲力尽,故在此总结以备忘。

    1.1 Scala与Intellij集成报错

    在Scala安装成功后,准备到Intellij上写Scala代码,发现Scala都配好了(关于如何配置,网上资料很多),结果运行Scala程序时报错。

    错误:Error:scalac: Multiple 'scala-library*.jar' files (scala-library.jar, scala-library.jar, scala-library.jar) in Scala compiler classpath in Scala SDK scala-sdk-2.12.2

    解决方法:OverStackflow上找到了思路。在Intellij中打开project structure,删除已有的Scala的路径(我的Scala是安装在/usr/local/Cellar/scala/2.12.2路径下的),重新添加/usr/local/Cellar/scala/2.12.2/idea/lib目录即可。
    改动前

    改动后


    ###1.2 Scala语法Intellij不认 在Intellij中写了一个Scala的HelloWorld,代码如下
    /**
     * Created by jackie on 17/5/7.
     */
    package com.jackie.scala.s510
    
    object HelloWorld {
      def main(args: Array[String]): Unit = {
        println("hello world")
    
        println(increaseAnother(5));
    
        println(Array(1,2,3,4).map{(x:Int)=>x+1}.mkString(","));
    
        println(Array(1,2,3,4) map{(x:Int)=>x+1} mkString(","));
    
        println(Array(1,2,3,4) map{(x:Int)=>x+1} mkString(","));
    
        // test object
        var person = new Person()
        person.name_=("john") // name_=()对应java中的setter方法
        println("Person name:" + person.name)
    
        person.name = "Jackie"
        println("Person name:" + person.name)
    
        var mp = new MyPerson()
        mp.name_("alihaha")
        println("MyPerson name:" + person.name)
    
        var pwp = new PersonWithParam("Jackie", 18)
        println("PersonWithParam:" + pwp.toString())
    
      }
    
      def increaseAnother(x: Int): Int = x + 1
    
    
    }
    
    
    

    运行的时候,报错mkString无法识别。

    错误:mkString can't be resolved
    解决方法:需要交代下我各个环境的版本参数,Intellij-14.0, jdk-8, scala-2.12.2。但是在Intellij中能选择的Scala最高版本只有2.11,所有后来将Intellij升级到2017.1版本,这时候还报错Error:scalac: Error: org.jetbrains.jps.incremental.scala.remote.ServerException,然后在Intellij中打开project structure,将scala由2.12.2换成2.11.7,问题解决。


    1.3 Spark与Intellij集成的问题

    Spark环境都安装好了,所以想在Intellij中运行Spark程序,但是在添加了Spark的相关依赖后,发现无法编译通过。
    错误:Exception NoSuchMethodError: com.google.common.collect.MapMaker.keyEquivalence
    解决方法:实现声明,之前在maven中一直引用的都是spark-core2.10,这时候报错,我定位问题出在Guava上,然后找到所有间接依赖了Guava的jar,都exclude,问题还是没有解决。期间添加了Spark的很多依赖,试了都不行,最后试了下Spark-core2.11,问题解决(有的时候版本的兼容性真的很坑)。



    1.4 hadoop上传本地文件到HDFS

    如果想将本地文件上传到HDFS,使用hadoop fs -put localDir hdfsDir,前提是保证hadoop启动。
    错误:

    jackie@jackies-MacBook-Pro:~|⇒  hadoop fs -put ~/Documents/doc/README.md /
    17/05/13 10:56:39 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    17/05/13 10:56:40 WARN ipc.Client: Failed to connect to server: localhost/127.0.0.1:8020: try once and fail.
    java.net.ConnectException: Connection refused
    	at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
    	at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
    	at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
    	at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
    	at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)
    	at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:681)
    	at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:777)
    	at org.apache.hadoop.ipc.Client$Connection.access$3500(Client.java:409)
    	at org.apache.hadoop.ipc.Client.getConnection(Client.java:1542)
    	at org.apache.hadoop.ipc.Client.call(Client.java:1373)
    	at org.apache.hadoop.ipc.Client.call(Client.java:1337)
    	at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:227)
    	at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:116)
    	at com.sun.proxy.$Proxy10.getFileInfo(Unknown Source)
    	at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:787)
    	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    	at java.lang.reflect.Method.invoke(Method.java:498)
    	at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:398)
    	at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeMethod(RetryInvocationHandler.java:163)
    	at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invoke(RetryInvocationHandler.java:155)
    	at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeOnce(RetryInvocationHandler.java:95)
    	at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:335)
    	at com.sun.proxy.$Proxy11.getFileInfo(Unknown Source)
    	at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:1700)
    	at org.apache.hadoop.hdfs.DistributedFileSystem$27.doCall(DistributedFileSystem.java:1436)
    	at org.apache.hadoop.hdfs.DistributedFileSystem$27.doCall(DistributedFileSystem.java:1433)
    	at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
    	at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1433)
    	at org.apache.hadoop.fs.Globber.getFileStatus(Globber.java:64)
    	at org.apache.hadoop.fs.Globber.doGlob(Globber.java:282)
    	at org.apache.hadoop.fs.Globber.glob(Globber.java:148)
    	at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1685)
    	at org.apache.hadoop.fs.shell.PathData.expandAsGlob(PathData.java:326)
    	at org.apache.hadoop.fs.shell.CommandWithDestination.getRemoteDestination(CommandWithDestination.java:195)
    	at org.apache.hadoop.fs.shell.CopyCommands$Put.processOptions(CopyCommands.java:256)
    	at org.apache.hadoop.fs.shell.Command.run(Command.java:164)
    	at org.apache.hadoop.fs.FsShell.run(FsShell.java:315)
    	at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:76)
    	at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:90)
    	at org.apache.hadoop.fs.FsShell.main(FsShell.java:378)
    put: Call From jackies-macbook-pro.local/192.168.73.56 to localhost:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see:  http://wiki.apache.org/hadoop/ConnectionRefused
    

    解决方法:进入hadoop安装目录(我的是/usr/local/Cellar/hadoop)进入sbin下执行./start-all.sh启动hadoop服务。


    1.5 Spark启动

    上篇在配置Spark时没有配置spark-defaults.conf文件,所以在Spark安装目录下(我的是/usr/local/Spark)启动./start-all.sh出错。
    错误:

    spark-shell
    Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
    Setting default log level to "WARN".
    To adjust logging level use sc.setLogLevel(newLevel).
    17/05/13 13:42:49 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    17/05/13 13:42:51 WARN StandaloneAppClient$ClientEndpoint: Failed to connect to master 192.168.73.56:7077
    org.apache.spark.SparkException: Exception thrown in awaitResult
    	at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:77)
    	at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:75)
    	at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
    	at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
    	at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
    	at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
    	at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
    	at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:88)
    	at org.apache.spark.rpc.RpcEnv.setupEndpointRef(RpcEnv.scala:96)
    	at org.apache.spark.deploy.client.StandaloneAppClient$ClientEndpoint$$anonfun$tryRegisterAllMasters$1$$anon$1.run(StandaloneAppClient.scala:106)
    	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    	at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    	at java.lang.Thread.run(Thread.java:745)
    Caused by: java.io.IOException: Failed to connect to /192.168.73.56:7077
    

    解决方法:将Spark安装目录下的conf中的spark-defaults.conf.template拷贝一份出来,重命名为spark-defaults.conf,按照https://sanwen8.cn/p/3bac5Bj.html配置好,再启动Spark,发现还是报错

    https://sanwen8.cn/p/3bac5Bj.html Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
    Setting default log level to "WARN".
    To adjust logging level use sc.setLogLevel(newLevel).
    17/05/13 14:19:12 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    17/05/13 14:19:15 ERROR SparkContext: Error initializing SparkContext.
    java.net.ConnectException: Call From jackies-MacBook-Pro.local/192.168.73.56 to 192.168.73.56:8021 failed on connection exception: java.net.ConnectException: Connection refused; For more details see:  http://wiki.apache.org/hadoop/ConnectionRefused
    	at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
    

    于是按照StackOverflow,将spark-defaults.conf中的spark.eventLog.enabled由true改为false,之后再启动成功。
    注意:这里我反复配置了localhost和自己的ip,来回切换,最终证明只要在/etc/hosts中配置好ip对应映射的名称,可以直接用名称即可,不用写ip,而且要保持hadoop中的配置文件和spark中的配置文件要一致,否则针对会精疲力尽。


    1.6 将运算任务交给Spark运行的报错

    运行下面的一个Demo程序

    package com.jackie.scala.s513;
    
    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaPairRDD;
    import org.apache.spark.api.java.JavaRDD;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.FlatMapFunction;
    import org.apache.spark.api.java.function.Function2;
    import org.apache.spark.api.java.function.PairFunction;
    import scala.Tuple2;
    
    import java.util.Arrays;
    import java.util.Iterator;
    import java.util.List;
    import java.util.regex.Pattern;
    
    /**
     * Created by jackie on 17/5/13.
     */
    public class Simple
    {
        private static final Pattern SPACE = Pattern.compile(" ");
    
        public static void main(String[] args) throws Exception {
    
            //创建一个RDD对象
            SparkConf conf=new SparkConf().setAppName("Simple").setMaster("local");
    
            //创建spark上下文对象,是数据的入口
            JavaSparkContext spark=new JavaSparkContext(conf);
    
            //获取数据源
            JavaRDD<String> lines = spark.textFile("hdfs://jackie:8020/");
    
            /**
             * 对于从数据源得到的DStream,用户可以在其基础上进行各种操作,
             * 对于当前时间窗口内从数据源得到的数据首先进行分割,
             * 然后利用Map和ReduceByKey方法进行计算,当然最后还有使用print()方法输出结果;
             */
            JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
                @Override
                public Iterator<String> call(String s) {
                    return Arrays.asList(SPACE.split(s)).iterator();
                }
            });
    
    
            //使用RDD的map和reduce方法进行计算
            JavaPairRDD<String, Integer> ones = words.mapToPair(
                    new PairFunction<String, String, Integer>() {
                        @Override
                        public Tuple2<String, Integer> call(String s) {
                            return new Tuple2<String, Integer>(s, 1);
                        }
                    });
    
    
            JavaPairRDD<String, Integer> counts = ones.reduceByKey(
                    new Function2<Integer, Integer, Integer>() {
                        @Override
                        public Integer call(Integer i1, Integer i2) {
                            return i1 + i2;
                        }
                    });
    
            List<Tuple2<String, Integer>> output = counts.collect();
            for (Tuple2<?,?> tuple : output) {
                //输出计算结果
                System.out.println(tuple._1() + ": " + tuple._2());
            }
    
    
            spark.stop();
        }
    }
    
    

    这个程序需要读取HDFS上根目录下的README.md文件,但是在此之前我执行了"hadoop namenode -format"(注意,这个操作引起了后面的一系列问题)。所以就准备重新使用hadoop fs -put localDir hdfsDir上传README.md,结果这时候报错
    错误:

    hadoop fs -put /Users/jackie/Documents/doc/README.md /
    17/05/13 15:47:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    17/05/13 15:47:16 WARN hdfs.DataStreamer: DataStreamer Exception
    org.apache.hadoop.ipc.RemoteException(java.io.IOException): File /README.md._COPYING_ could only be replicated to 0 nodes instead of minReplication (=1).  There are 0 datanode(s) running and no node(s) are excluded in this operation.
    	at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:1733)
    	at org.apache.hadoop.hdfs.server.namenode.FSDirWriteFileOp.chooseTargetForNewBlock(FSDirWriteFileOp.java:265)
    	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:2496)
    	at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:828)
    
    

    后来发现是datanode没有启动,然后开始找datanode没有启动的原因,在这里http://www.aboutyun.com/thread-7931-1-1.html
    文中解释:当我们执行文件系统格式化时,会在namenode数据文件夹(即配置文件中dfs.name.dir在本地系统的路径)中保存一个current/VERSION文件,记录namespaceID,标识了所格式化的 namenode的版本。如果我们频繁的格式化namenode,那么datanode中保存(即配置文件中dfs.data.dir在本地系统的路径)的current/VERSION文件只是你第一次格式化时保存的namenode的ID,因此就会造成datanode与namenode之间的id不一致。

    解决方法:采取的做法是根据执行hadoop namenode –format得到成功的提示。

    这时候再执行jps命令,我们就可以看到datanode了

    类似的,同样是在执行hadoop fs -put /Users/jackie/Documents/doc/README.md /是报错如下

    hadoop fs -put /Users/jackie/Documents/doc/README.md /
    17/05/15 09:51:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    17/05/15 09:51:05 WARN ipc.Client: Failed to connect to server: jackie/192.168.73.56:8020: try once and fail.
    java.net.ConnectException: Connection refused
    	at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
    	at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
    	at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
    	at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
    	at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)
    	at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:681)
    	at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:777)
    	at org.apache.hadoop.ipc.Client$Connection.access$3500(Client.java:409)
    

    一开始以为是ip的配置问题,但是反复修改无果,后来发现使用jps时,没有启动namenode,于是在网上找http://blog.csdn.net/bychjzh/article/details/7830508
    于是在/usr/local/Cellar/hadoop/hdfs下删除原来在core-site.xml中配置的tmp目录,然后新建了hadoop_tmp目录,并在core-site.xml中修改成

    <property>
         <name>hadoop.tmp.dir</name>
    <value>/usr/local/Cellar/hadoop/hdfs/hadoop_tmp</value>
        <description>A base for other temporary directories.</description>
      </property>
    

    并执行hadoop namenode –format,最后在使用start-all.sh启动所有的服务,执行上传文件成功

    如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮,您的“推荐”将是我最大的写作动力!如果您想持续关注我的文章,请扫描二维码,关注JackieZheng的微信公众号,我会将我的文章推送给您,并和您一起分享我日常阅读过的优质文章。

  • 相关阅读:
    jquery选择器
    frameset的target属性
    最长回文子串 南邮NOJ 1100
    最长回文子串 南邮NOJ 1100
    最长回文子串 南邮NOJ 1100
    NOJ 蛇形填数 1094
    NOJ 蛇形填数 1094
    NOJ 蛇形填数 1094
    NOJ 蛇形填数 1094
    开灯问题 南邮NOJ 1589 (另一种解法)
  • 原文地址:https://www.cnblogs.com/bigdataZJ/p/hellospark2.html
Copyright © 2011-2022 走看看