zoukankan      html  css  js  c++  java
  • Spark/Scala实现推荐系统中的相似度算法(欧几里得距离、皮尔逊相关系数、余弦相似度:附实现代码)

    推荐系统中,协同过滤算法是应用较多的,具体又主要划分为基于用户和基于物品的协同过滤算法,核心点就是基于"一个人"或"一件物品",根据这个人或物品所具有的属性,比如对于人就是性别、年龄、工作、收入、喜好等,找出与这个人或物品相似的人或物,当然实际处理中参考的因子会复杂的多。

    本篇文章不介绍相关数学概念,主要给出常用的相似度算法代码实现,并且同一算法有多种实现方式。

    欧几里得距离

    def euclidean2(v1: Vector, v2: Vector): Double = {
        require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
          s"=${v2.size}.")
    
        val x = v1.toArray
        val y = v2.toArray
    
        euclidean(x, y)
      }
    
      def euclidean(x: Array[Double], y: Array[Double]): Double = {
        require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
          s"=${y.length}.")
    
        math.sqrt(x.zip(y).map(p => p._1 - p._2).map(d => d * d).sum)
      }
      
      def euclidean(v1: Vector, v2: Vector): Double = {
        val sqdist = Vectors.sqdist(v1, v2)
        math.sqrt(sqdist)
      }
    

    皮尔逊相关系数

    def pearsonCorrelationSimilarity(arr1: Array[Double], arr2: Array[Double]): Double = {
        require(arr1.length == arr2.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${arr1.length} and Len(y)" +
          s"=${arr2.length}.")
    
        val sum_vec1 = arr1.sum
        val sum_vec2 = arr2.sum
    
        val square_sum_vec1 = arr1.map(x => x * x).sum
        val square_sum_vec2 = arr2.map(x => x * x).sum
    
        val zipVec = arr1.zip(arr2)
    
        val product = zipVec.map(x => x._1 * x._2).sum
        val numerator = product - (sum_vec1 * sum_vec2 / arr1.length)
    
        val dominator = math.pow((square_sum_vec1 - math.pow(sum_vec1, 2) / arr1.length) * (square_sum_vec2 - math.pow(sum_vec2, 2) / arr2.length), 0.5)
        if (dominator == 0) Double.NaN else numerator / (dominator * 1.0)
      }
    

    余弦相似度

    /** jblas实现余弦相似度 */
      def cosineSimilarity(v1: DoubleMatrix, v2: DoubleMatrix): Double = {
        require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(v1)=${x.length} and Len(v2)" +
          s"=${y.length}.")
          
        v1.dot(v2) / (v1.norm2() * v2.norm2())
      }
      
    def cosineSimilarity(v1: Vector, v2: Vector): Double = {
        require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
          s"=${v2.size}.")
    
        val x = v1.toArray
        val y = v2.toArray
    
        cosineSimilarity(x, y)
      }
    
      
      def cosineSimilarity(x: Array[Double], y: Array[Double]): Double = {
        require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
          s"=${y.length}.")
    
        val member = x.zip(y).map(d => d._1 * d._2).sum
       
        val temp1 = math.sqrt(x.map(math.pow(_, 2)).sum)
        val temp2 = math.sqrt(y.map(math.pow(_, 2)).sum)
    
        val denominator = temp1 * temp2
        if (denominator == 0) Double.NaN else member / (denominator * 1.0)
      }
    

    修正余弦相似度

    def adjustedCosineSimJblas(x: DoubleMatrix, y: DoubleMatrix): Double = {
        require(x.length == y.length, s"SimilarityAlgorithms:DoubleMatrix length do not match: Len(x)=${x.length} and Len(y)" +
          s"=${y.length}.")
    
        val avg = (x.sum() + y.sum()) / (x.length + y.length)
        val v1 = x.sub(avg)
        val v2 = y.sub(avg)
        v1.dot(v2) / (v1.norm2() * v2.norm2())
      }
    
     
      def adjustedCosineSimJblas(x: Array[Double], y: Array[Double]): Double = {
        require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
          s"=${y.length}.")
    
        val v1 = new DoubleMatrix(x)
        val v2 = new DoubleMatrix(y)
    
        adjustedCosineSimJblas(v1, v2)
      }
      
      def adjustedCosineSimilarity(v1: Vector, v2: Vector): Double = {
        require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
          s"=${v2.size}.")
        val x = v1.toArray
        val y = v2.toArray
    
        adjustedCosineSimilarity(x, y)
      }
    
      def adjustedCosineSimilarity(x: Array[Double], y: Array[Double]): Double = {
        require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
          s"=${y.length}.")
    
        val avg = (x.sum + y.sum) / (x.length + y.length)
    
        val member = x.map(_ - avg).zip(y.map(_ - avg)).map(d => d._1 * d._2).sum
    
        val temp1 = math.sqrt(x.map(num => math.pow(num - avg, 2)).sum)
        val temp2 = math.sqrt(y.map(num => math.pow(num - avg, 2)).sum)
    
        val denominator = temp1 * temp2
        if (denominator == 0) Double.NaN else member / (denominator * 1.0)
      }
    

    大家如果在实际业务处理中有相关需求,可以根据实际场景对上述代码进行优化或改造,当然很多算法框架提供的一些算法是对这些相似度算法的封装,底层还是依赖于这一套,也能帮助大家做更好的了解。比如Spark MLlib在KMeans算法实现中,底层对欧几里得距离的计算实现。

    推荐文章:
    重要 | Spark分区并行度决定机制
    解析SparkStreaming和Kafka集成的两种方式


    关注微信公众号:大数据学习与分享,获取更对技术干货

  • 相关阅读:
    asp.net导出数据到execl并保存到本地 不需要调用Office组件
    动态创建DataTable,GridView创建多表头,表头跨行或跨列合并,创建计算列及列内容自适应等
    Oracle内置SQL函数收集整理大全
    无比强大的GridView,表头固定,表体有滚动条可滚动
    很不错的asp.net文件上传类c# 搜索文件 移动文件 删除文件等
    【备用】非常不错的ASP操作数据库类,支持多数据库MSSQL,ACCESS,ORACLE,MYSQL等
    Asp.Net读取Execl常见问题收集
    经常用到的交叉表问题,一般用动态SQL能生成动态列
    C# asp.net中常见的字符串处理函数及数字格式化
    比较两个DataTable中不同的记录,且合并两个DataTable的列显示,有图
  • 原文地址:https://www.cnblogs.com/bigdatalearnshare/p/14104844.html
Copyright © 2011-2022 走看看