zoukankan      html  css  js  c++  java
  • 机器学习笔记,使用metrics.classification_report显示精确率,召回率,f1指数

    sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息。 
    主要参数: 
    y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值。 
    y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值。 
    labels:array,shape = [n_labels],报表中包含的标签索引的可选列表。 
    target_names:字符串列表,与标签匹配的可选显示名称(相同顺序)。 
    sample_weight:类似于shape = [n_samples]的数组,可选项,样本权重。 
    digits:int,输出浮点值的位数.

        Parameters
        ----------
        y_true : 1d array-like, or label indicator array / sparse matrix
            Ground truth (correct) target values.
    
        y_pred : 1d array-like, or label indicator array / sparse matrix
            Estimated targets as returned by a classifier.
    
        labels : array, shape = [n_labels]
            Optional list of label indices to include in the report.
    
        target_names : list of strings
            Optional display names matching the labels (same order).
    
        sample_weight : array-like of shape = [n_samples], optional
            Sample weights.
    
        digits : int
            Number of digits for formatting output floating point values
    
        Returns
        -------
        report : string
            Text summary of the precision, recall, F1 score for each class.
    
            The reported averages are a prevalence-weighted macro-average across
            classes (equivalent to :func:`precision_recall_fscore_support` with
            ``average='weighted'``).
    
            Note that in binary classification, recall of the positive class
            is also known as "sensitivity"; recall of the negative class is
            "specificity".
    
        Examples
        --------
        >>> from sklearn.metrics import classification_report
        >>> y_true = [0, 1, 2, 2, 2]
        >>> y_pred = [0, 0, 2, 2, 1]
        >>> target_names = ['class 0', 'class 1', 'class 2']
        >>> print(classification_report(y_true, y_pred, target_names=target_names))
                     precision    recall  f1-score   support
        <BLANKLINE>
            class 0       0.50      1.00      0.67         1
            class 1       0.00      0.00      0.00         1
            class 2       1.00      0.67      0.80         3
        <BLANKLINE>
        avg / total       0.70      0.60      0.61         5
        <BLANKLINE>

    参考:

    https://www.programcreek.com/python/example/81623/sklearn.metrics.classification_report

    https://blog.csdn.net/akadiao/article/details/78788864

  • 相关阅读:
    METHODS OF AND APPARATUS FOR USING TEXTURES IN GRAPHICS PROCESSING SYSTEMS
    Display controller
    Graphics processing architecture employing a unified shader
    Graphics-Processing Architecture Based on Approximate Rendering
    Architectures for concurrent graphics processing operations
    Procedural graphics architectures and techniques
    DYNAMIC CONTEXT SWITCHING BETWEEN ARCHITECTURALLY DISTINCT GRAPHICS PROCESSORS
    Thermal zone monitoring in an electronic device
    System and method for dynamically adjusting to CPU performance changes
    Framework for Graphics Animation and Compositing Operations
  • 原文地址:https://www.cnblogs.com/bincoding/p/8911983.html
Copyright © 2011-2022 走看看