zoukankan      html  css  js  c++  java
  • 洛谷P1516 青蛙的约会

    题目描述

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是

    它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有

    约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非

    这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来

    判断这两只青蛙是否能够碰面,会在什么时候碰面。

    我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我

    们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,

    两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

    输入输出格式

    输入格式:

    输入只包括一行5个整数x,y,m,n,L

    其中0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000。

    输出格式:

    输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。

    输入输出样例

    输入样例#1: 
    1 2 3 4 5
    
    输出样例#1: 
    4


    ...................................
    心中无数只cnm路过,居然弄了我一上午.....
    emmmmmmm...........................

    这题读题可得到(n-m)t ≡ x-y (mod L),明显的,能得到这样的方程:(n-m)*t - k*L = x-y。
    之后再换元: 令 a = (n-m),b = l,c = (x-y) ,于是就有a*t-k*L = c。很明显
    我们可以用拓展欧几里德求此方程的一组解。

    但是(重点来了), 题目要求的是求青蛙最小遇见时间,所以要求最小解,所以
    如果我们求得一组解(x,y),则其最小解用以下式子算:

    ((x*(c/d)) + b/d)%b/d 其中d为a,b最大公因数。

    恩就这样吧。 ...
    下面贴代码。
    有问题,留言。

    #include<iostream>
    using namespace std;
    
    
    void extgcd(long long &d,long long a,long long b,long long &x,long long&y){
        if(b == 0){
            x = 1;
            y = 0;
            d = a;
        }
        else {
            extgcd(d,b,a%b,y,x);
            y -= a/b*x;
        }
    }
    
    int main(){
        long long x,y,m,n,L;
        cin >> x >> y >> m >> n >> L ;
        long long a = n-m,b = L,c = x-y,d;
        long long xx,yy;
        if(a < 0){
            a = -a;
            c = -c;
        }
        extgcd(d,a,b,xx,yy);
        if(c % d != 0)cout << "Impossible"<<endl;
        else{
            cout << (xx*(c/d)+L/d)%(L/d) << endl;
        }
        return 0;
    }
  • 相关阅读:
    PHP Document 注释标记及规范 && PHP命名规范
    JavaScript 最佳实践
    PHP正则表达式详解(三)
    $_SERVER["SCRIPT_NAME"]、$_SERVER["PHP_SELF"]、$_SERVER["QUERY_STRING"]、$_SERVER["REQUEST_URI"]
    PHP判断远程文件是否存在
    HDOJ1251-统计难题(trie树入门)
    Spark的日志配置
    实现Android 动态载入APK(Fragment or Activity实现)
    OC与JS互相调用
    mac os使用lsusb命令和连接未知的Android设备
  • 原文地址:https://www.cnblogs.com/bingdada/p/7716340.html
Copyright © 2011-2022 走看看