zoukankan      html  css  js  c++  java
  • 图的基础

                                                                

    邻接矩阵适合稠密图,邻接表适合稀疏图

     1 // 稠密图 - 邻接矩阵
     2 class DenseGraph {
     3 
     4 private:
     5     int n, m;//顶点和边
     6     bool directed;//有向图还是无向图
     7     vector<vector<bool>> g;//邻接矩阵的表示
     8     //用bool值表示两个顶点之间是否有边
     9 public:
    10     DenseGraph(int n, int m) {//构造函数进行初始化
    11         this->m = 0;//边数初始为0
    12         this->n = n;//顶点数
    13         for (int i = 0; i < n; i++) {
    14             g.push_back(vector<bool>(n, false));
    15         }
    16     }
    17     ~DenseGraph() {
    18 
    19     }
    20 
    21     int V() { return n; }
    22     int E() { return m; }
    23     void addEdge(int v, int w) {
    24         assert(v >= 0 && v < n);
    25         assert(w >= 0 && w < n);
    26         if (hasEdge(v, w)) return;//判断连个点是否相连
    27         g[v][w] = true;
    28         if (!directed)
    29             g[w][v] = true;
    30 
    31         m++;
    32     }
    33     bool hasEdge(int v, int w) {
    34         assert(v >= 0 && v < n);
    35         assert(w >= 0 && w < n);
    36         return g[v][w];
    37     }
    38 
    39     void show() {
    40 
    41         for (int i = 0; i < n; i++) {
    42             for (int j = 0; j < n; j++)
    43                 cout << g[i][j] << "	";
    44             cout << endl;
    45         }
    46     }
    47 
    48 
    49     class adjIterator {//构造一个图的迭代器,用来访问途中某一顶点的连接点
    50     private:
    51         DenseGraph &G;//
    52         int v;//顶点
    53         int index;//索引
    54     public:
    55         adjIterator(DenseGraph &graph, int v) : G(graph) {
    56             this->v = v;
    57             this->index = -1;
    58         }
    59 
    60         int begin() {
    61 
    62             index = -1;
    63             return next();//将顶点自身
    64         }
    65 
    66         int next() {
    67             for (index += 1; index < G.V(); index++)
    68                 if (G.g[v][index])
    69                     return index;
    70             return -1;
    71         }
    72 
    73         bool end() {
    74             return index >= G.V();
    75         }
    76     };
    77 
    78 };
     1 // 稀疏图 - 邻接表
     2 class SparseGraph {
     3 
     4 private:
     5     int n, m;
     6     bool directed;
     7     vector<vector<int>> g;
     8 
     9 public:
    10     SparseGraph(int n, bool directed) {
    11         this->n = n;
    12         this->m = 0;
    13         this->directed = directed;
    14         for (int i = 0; i < n; i++)
    15             g.push_back(vector<int>());
    16     }
    17 
    18     ~SparseGraph() {
    19 
    20     }
    21 
    22     int V() { return n; }
    23     int E() { return m; }
    24 
    25     void addEdge(int v, int w) {
    26 
    27         assert(v >= 0 && v < n);
    28         assert(w >= 0 && w < n);
    29 
    30         g[v].push_back(w);
    31         if (v != w && !directed)
    32             g[w].push_back(v);
    33 
    34         m++;
    35     }
    36 
    37     bool hasEdge(int v, int w) {
    38 
    39         assert(v >= 0 && v < n);
    40         assert(w >= 0 && w < n);
    41 
    42         for (int i = 0; i < g[v].size(); i++)
    43             if (g[v][i] == w)
    44                 return true;
    45         return false;
    46     }
    47 
    48     void show() {
    49 
    50         for (int i = 0; i < n; i++) {
    51             cout << "vertex " << i << ":	";
    52             for (int j = 0; j < g[i].size(); j++)
    53                 cout << g[i][j] << "	";
    54             cout << endl;
    55         }
    56     }
    57 
    58 
    59     class adjIterator {
    60     private:
    61         SparseGraph &G;
    62         int v;
    63         int index;
    64     public:
    65         adjIterator(SparseGraph &graph, int v) : G(graph) {
    66             this->v = v;
    67             this->index = 0;
    68         }
    69 
    70         int begin() {
    71             index = 0;
    72             if (G.g[v].size())
    73                 return G.g[v][index];
    74             return -1;
    75         }
    76 
    77         int next() {
    78             index++;
    79             if (index < G.g[v].size())
    80                 return G.g[v][index];
    81             return -1;
    82         }
    83 
    84         bool end() {
    85             return index >= G.g[v].size();
    86         }
    87     };
    88 };

    读取图的信息的类:

     1 template <typename Graph>
     2 class ReadGraph {
     3 
     4 public:
     5     ReadGraph(Graph &graph, const string &filename) {
     6 
     7         ifstream file(filename);
     8         string line;
     9         int V, E;
    10 
    11         assert(file.is_open());
    12 
    13         assert(getline(file, line));
    14         stringstream ss(line);
    15         ss >> V >> E;
    16 
    17         assert(V == graph.V());
    18 
    19         for (int i = 0; i < E; i++) {
    20 
    21             assert(getline(file, line));
    22             stringstream ss(line);
    23 
    24             int a, b;
    25             ss >> a >> b;
    26             assert(a >= 0 && a < V);
    27             assert(b >= 0 && b < V);
    28             graph.addEdge(a, b);
    29         }
    30     }
    31 };

    遍历临边:

    深度优先遍历:

    深度优先搜索:

     1 template <typename Graph>
     2 class Component {
     3 
     4 private:
     5     Graph &G;
     6     bool *visited;
     7     int ccount;
     8     int *id;
     9 
    10     void dfs(int v) {
    11 
    12         visited[v] = true;
    13         id[v] = ccount;
    14         typename Graph::adjIterator adj(G, v);
    15         for (int i = adj.begin(); !adj.end(); i = adj.next()) {
    16             if (!visited[i])
    17                 dfs(i);
    18         }
    19     }
    20 
    21 public:
    22     Component(Graph &graph) : G(graph) {
    23 
    24         visited = new bool[G.V()];
    25         id = new int[G.V()];
    26         ccount = 0;//连通域个数
    27         for (int i = 0; i < G.V(); i++) {
    28             visited[i] = false;
    29             id[i] = -1;
    30         }
    31 
    32         for (int i = 0; i < G.V(); i++)
    33             if (!visited[i]) {
    34                 dfs(i);//深度优先搜索
    35                 ccount++;
    36             }
    37     }
    38 
    39     ~Component() {
    40         delete[] visited;
    41         delete[] id;
    42     }
    43 
    44     int count() {
    45         return ccount;
    46     }
    47 
    48     bool isConnected(int v, int w) {
    49         assert(v >= 0 && v < G.V());
    50         assert(w >= 0 && w < G.V());
    51         return id[v] == id[w];
    52     }
    53 };

     路径:

     1 template <typename Graph>
     2 class Path {
     3 
     4 private:
     5     Graph &G;
     6     int s;
     7     bool* visited;
     8     int * from;
     9 
    10     void dfs(int v) {
    11 
    12         visited[v] = true;
    13 
    14         typename Graph::adjIterator adj(G, v);
    15         for (int i = adj.begin(); !adj.end(); i = adj.next()) {
    16             if (!visited[i]) {
    17                 from[i] = v;
    18                 dfs(i);
    19             }
    20         }
    21     }
    22 
    23 public:
    24     Path(Graph &graph, int s) :G(graph) {
    25 
    26         // 算法初始化
    27         assert(s >= 0 && s < G.V());
    28 
    29         visited = new bool[G.V()];
    30         from = new int[G.V()];
    31         for (int i = 0; i < G.V(); i++) {
    32             visited[i] = false;
    33             from[i] = -1;
    34         }
    35         this->s = s;
    36 
    37         // 寻路算法
    38         dfs(s);
    39     }
    40 
    41     ~Path() {
    42 
    43         delete[] visited;
    44         delete[] from;
    45     }
    46 
    47     bool hasPath(int w) {
    48         assert(w >= 0 && w < G.V());
    49         return visited[w];
    50     }
    51 
    52     void path(int w, vector<int> &vec) {
    53 
    54         stack<int> s;
    55 
    56         int p = w;
    57         while (p != -1) {
    58             s.push(p);
    59             p = from[p];
    60         }
    61 
    62         vec.clear();
    63         while (!s.empty()) {
    64             vec.push_back(s.top());
    65             s.pop();
    66         }
    67     }
    68 
    69     void showPath(int w) {
    70 
    71         vector<int> vec;
    72         path(w, vec);
    73         for (int i = 0; i < vec.size(); i++) {
    74             cout << vec[i];
    75             if (i == vec.size() - 1)
    76                 cout << endl;
    77             else
    78                 cout << " -> ";
    79         }
    80     }
    81 };

    广度优先遍历:使用队列实现。可以求出最短路径

     

      1 template <typename Graph>
      2 class ShortestPath {
      3 
      4 private:
      5     Graph &G;
      6     int s;
      7     bool *visited;
      8     int *from;
      9     int *ord;
     10 
     11 public:
     12     ShortestPath(Graph &graph, int s) :G(graph) {
     13 
     14         // 算法初始化
     15         assert(s >= 0 && s < graph.V());
     16 
     17         visited = new bool[graph.V()];
     18         from = new int[graph.V()];
     19         ord = new int[graph.V()];
     20         for (int i = 0; i < graph.V(); i++) {
     21             visited[i] = false;
     22             from[i] = -1;
     23             ord[i] = -1;
     24         }
     25         this->s = s;
     26 
     27         queue<int> q;
     28 
     29         // 无向图最短路径算法
     30         q.push(s);
     31         visited[s] = true;
     32         ord[s] = 0;
     33         while (!q.empty()) {
     34 
     35             int v = q.front();
     36             q.pop();
     37 
     38             typename Graph::adjIterator adj(G, v);
     39             for (int i = adj.begin(); !adj.end(); i = adj.next())
     40                 if (!visited[i]) {
     41                     q.push(i);
     42                     visited[i] = true;
     43                     from[i] = v;
     44                     ord[i] = ord[v] + 1;
     45                 }
     46         }
     47 
     48     }
     49 
     50     ~ShortestPath() {
     51 
     52         delete[] visited;
     53         delete[] from;
     54         delete[] ord;
     55     }
     56 
     57     bool hasPath(int w) {
     58         assert(w >= 0 && w < G.V());
     59         return visited[w];
     60     }
     61 
     62     void path(int w, vector<int> &vec) {
     63 
     64         assert(w >= 0 && w < G.V());
     65 
     66         stack<int> s;
     67 
     68         int p = w;
     69         while (p != -1) {
     70             s.push(p);
     71             p = from[p];
     72         }
     73 
     74         vec.clear();
     75         while (!s.empty()) {
     76             vec.push_back(s.top());
     77             s.pop();
     78         }
     79     }
     80 
     81     void showPath(int w) {
     82 
     83         assert(w >= 0 && w < G.V());
     84 
     85         vector<int> vec;
     86         path(w, vec);
     87         for (int i = 0; i < vec.size(); i++) {
     88             cout << vec[i];
     89             if (i == vec.size() - 1)
     90                 cout << endl;
     91             else
     92                 cout << " -> ";
     93         }
     94     }
     95 
     96     int length(int w) {
     97         assert(w >= 0 && w < G.V());
     98         return ord[w];
     99     }
    100 };
  • 相关阅读:
    sort
    usaco-3.1-humble-pass
    usaco-3.1-inflate-pass
    usaco-3.1-agrinet-pass
    usaco-2.4-fracdec-pass
    usaco-2.4-comhome-pass
    usaco-2.4-cowtour-pass
    usaco-2.4-maze1-pass
    usaco-2.4-ttwo-pass
    usaco-2.3-concom-pass
  • 原文地址:https://www.cnblogs.com/bingzzzZZZ/p/8466252.html
Copyright © 2011-2022 走看看