https://leetcode.com/problems/kth-smallest-element-in-a-bst/
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
1.Try to utilize the property of a BST.
2.What if you could modify the BST node's structure?
3.The optimal runtime complexity is O(height of BST).
Solution
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def kthSmallest(self, root, k):
"""
:type root: TreeNode
:type k: int
:rtype: int
count = self.countNode(root.left)
if k <= count:
return self.kthSmallest(root.left, k)
elif k > count + 1:
return self.kthSmallest(root.right, k-count-1)
return root.val
def countNode(self, node):
if node == None:
return 0
return 1 + self.countNode(node.left) + self.countNode(node.right)
"""
st = []
while root is not None:
st.append(root)
root = root.left
while k != 0:
node = st.pop()
print(node.val)
k -= 1
if k == 0:
return node.val
right = node.right
while right:
st.append(right)
right = right.left
return -1