Tags
搜索、( ext{A*})、很酷很炫的算法
- 定义二元组( ext{DIS(X,Now)})表示到达( ext{X})点,路程是( ext{Now});
- 反向( ext{SPFA/Dijkstra})作为每个点的估价函数;
- 从队首取出( ext{DIS}),扩展状态;
- 每当获得一个( ext{DIS})就加入到( ext{priority_queue})里面去;
Code:
#include <cstdio>
#include <cstring>
#include <queue>
#define re register
#define GC getchar()
#define Clean(X,K) memset(X,K,sizeof(X))
int Qread () {
int X = 0 ; char C = GC ;
while (C > '9' || C < '0') C = GC ;
while (C >='0' && C <='9') {
X = X * 10 + C - '0' ;
C = GC ;
}
return X ;
}
const int Maxn = 5005 , Maxm = 400005 , INF = 20021020 << 2;
int N , M , Head[Maxn] , En = 0 , Vis[Maxn] ;
double Ek , Mdis[Maxn];
struct DIS {
int X ;
double Now ;
};
bool operator < (const DIS &A , const DIS &B) {
return A.Now + Mdis[A.X ] > B.Now + Mdis[B.X ] ;
}
std :: priority_queue <DIS> Q ;
struct Edge {
int From_Point , Goto_Point , Next_Edge ;
double Lenth_of_Edge ;
};
Edge E[Maxm] ;
void Adg (int X , int Y , double L) {
E[++En].From_Point =X ;
E[En].Goto_Point = Y ;
E[En].Next_Edge = Head[X] ;
E[En].Lenth_of_Edge = L ;
Head[X] = En ;
}
void SPFA () {
std :: queue <int> Q ;
for (re int i = 1 ; i <= N; ++ i) Mdis[i] = INF ;
Clean (Vis , 0) , Mdis[N] = 0 ;
Q.push(N) ;
while (!Q.empty()) {
int Now = Q.front() ;
Q.pop() ;
Vis[Now] = 0 ;
for (re int i = Head[Now] ; i; i = E[i].Next_Edge ) {
double Dis = Mdis[Now] + E[i].Lenth_of_Edge ;
if (Mdis[E[i].Goto_Point ] > Dis) {
Mdis[E[i].Goto_Point ] = Dis ;
if (!Vis[E[i].Goto_Point ]) {
Vis[E[i].Goto_Point ] = 1 ;
Q.push(E[i].Goto_Point ) ;
}
}
}
}
}
DIS Mp (int X , double Now) {
DIS Ans ;
Ans.X = X , Ans.Now = Now ;
return Ans ;
}
int main () {
// freopen ("P2483.in" , "r" , stdin) ;
N = Qread () , M = Qread () ;
scanf ("%lf" , &Ek) ;
Clean (Head , 0) , En = 0 ;
for (re int i = 1 ; i <= M; ++ i) {
double L ;
int X = Qread () , Y = Qread () ;
scanf ("%lf" , &L) ;
Adg (Y , X , L) ;
}
SPFA () ;
Clean(Head , 0 ) , En = 0 , M <<= 1 ;
for (re int i = 1 ; i <= M ; ++ i) Adg (E[i].Goto_Point , E[i].From_Point , E[i].Lenth_of_Edge ) ;
M >>= 1 ;
Q.push(Mp(1 , 0)) ;
int Ans = 0 ;
while (!Q.empty()) {
DIS Now = Q.top() ;
Q.pop() ;
if (Now.X == N) {
Ek -= Now.Now ;
if (Ek < 0) break ;
++ Ans ;
continue ;
}
for (re int i = Head[Now.X ] ; i; i = E[i].Next_Edge ) Q.push(Mp(E[i].Goto_Point , Now.Now + E[i].Lenth_of_Edge )) ;
}
printf ("%d
" , Ans) ;
fclose (stdin) , fclose (stdout) ;
return 0 ;
}
Thanks!