zoukankan      html  css  js  c++  java
  • Apache Hive (七)Hive的DDL操作

    转自:https://www.cnblogs.com/qingyunzong/p/8723271.html

    库操作

    1、创建库

    语法结构

    CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name

      [COMMENT database_comment]      //关于数据块的描述

      [LOCATION hdfs_path]          //指定数据库在HDFS上的存储位置

      [WITH DBPROPERTIES (property_name=property_value, ...)];    //指定数据块属性

      默认地址:/user/hive/warehouse/db_name.db/table_name/partition_name/…

    创建库的方式

    (1)创建普通的数据库

     
    0: jdbc:hive2://hadoop3:10000> create database t1;
    No rows affected (0.308 seconds)
    0: jdbc:hive2://hadoop3:10000> show databases;
    +----------------+
    | database_name  |
    +----------------+
    | default        |
    | myhive         |
    | t1             |
    +----------------+
    3 rows selected (0.393 seconds)
    0: jdbc:hive2://hadoop3:10000> 
     

    (2)创建库的时候检查存与否

    0: jdbc:hive2://hadoop3:10000> create database if not exists t1;
    No rows affected (0.176 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    (3)创建库的时候带注释

    
    

    0: jdbc:hive2://hadoop3:10000> create database if not exists t2 comment 'learning hive';
    No rows affected (0.217 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    (4)创建带属性的库

    0: jdbc:hive2://hadoop3:10000> create database if not exists t3 with dbproperties('creator'='hadoop','date'='2018-04-05');
    No rows affected (0.255 seconds)
    0: jdbc:hive2://hadoop3:10000>

    2、查看库

    查看库的方式

    (1)查看有哪些数据库

     

    0: jdbc:hive2://hadoop3:10000> show databases;
    +----------------+
    | database_name |
    +----------------+
    | default |
    | myhive |
    | t1 |
    | t2 |
    | t3 |
    +----------------+
    5 rows selected (0.164 seconds)
    0: jdbc:hive2://hadoop3:10000>

    (2)显示数据库的详细属性信息

    语法

    desc database [extended] dbname;

    示例

     
    0: jdbc:hive2://hadoop3:10000> desc database extended t3;
    +----------+----------+------------------------------------------+-------------+-------------+------------------------------------+
    | db_name  | comment  |                 location                 | owner_name  | owner_type  |             parameters             |
    +----------+----------+------------------------------------------+-------------+-------------+------------------------------------+
    | t3       |          | hdfs://myha01/user/hive/warehouse/t3.db  | hadoop      | USER        | {date=2018-04-05, creator=hadoop}  |
    +----------+----------+------------------------------------------+-------------+-------------+------------------------------------+
    1 row selected (0.11 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    (3)查看正在使用哪个库

     
    0: jdbc:hive2://hadoop3:10000> select current_database();
    +----------+
    |   _c0    |
    +----------+
    | default  |
    +----------+
    1 row selected (1.36 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    (4)查看创建库的详细语句

     
    0: jdbc:hive2://hadoop3:10000> show create database t3;
    +----------------------------------------------+
    |                createdb_stmt                 |
    +----------------------------------------------+
    | CREATE DATABASE `t3`                         |
    | LOCATION                                     |
    |   'hdfs://myha01/user/hive/warehouse/t3.db'  |
    | WITH DBPROPERTIES (                          |
    |   'creator'='hadoop',                        |
    |   'date'='2018-04-05')                       |
    +----------------------------------------------+
    6 rows selected (0.155 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    3、删除库

    说明

    删除库操作

    drop database dbname;
    drop database if exists dbname;

    默认情况下,hive 不允许删除包含表的数据库,有两种解决办法:

    1、 手动删除库下所有表,然后删除库

    2、 使用 cascade 关键字

    drop database if exists dbname cascade;

    默认情况下就是 restrict drop database if exists myhive ==== drop database if exists myhive restrict

    示例

    (1)删除不含表的数据库

     
    0: jdbc:hive2://hadoop3:10000> show tables in t1;
    +-----------+
    | tab_name  |
    +-----------+
    +-----------+
    No rows selected (0.147 seconds)
    0: jdbc:hive2://hadoop3:10000> drop database t1;
    No rows affected (0.178 seconds)
    0: jdbc:hive2://hadoop3:10000> show databases;
    +----------------+
    | database_name  |
    +----------------+
    | default        |
    | myhive         |
    | t2             |
    | t3             |
    +----------------+
    4 rows selected (0.124 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    (2)删除含有表的数据库

    0: jdbc:hive2://hadoop3:10000> drop database if exists t3 cascade;
    No rows affected (1.56 seconds)
    0: jdbc:hive2://hadoop3:10000>

    4、切换库

    语法

    use database_name

    示例

    0: jdbc:hive2://hadoop3:10000> use t2;
    No rows affected (0.109 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    表操作

    1、创建表

    语法

    CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name

      [(col_name data_type [COMMENT col_comment], ...)]

      [COMMENT table_comment]

      [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

      [CLUSTERED BY (col_name, col_name, ...)

        [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]

      [ROW FORMAT row_format]

      [STORED AS file_format]

      [LOCATION hdfs_path]

    详情请参见: https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualD DL-CreateTable

     
    CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常
    •EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION)
    •LIKE 允许用户复制现有的表结构,但是不复制数据
    •COMMENT可以为表与字段增加描述
    PARTITIONED BY 指定分区
    ROW FORMAT
      DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
        MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
        | SERDE serde_name [WITH SERDEPROPERTIES
        (property_name=property_value, property_name=property_value, ...)]
      用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,
    用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。
    STORED AS
      SEQUENCEFILE //序列化文件
      | TEXTFILE //普通的文本文件格式
      | RCFILE  //行列存储相结合的文件
      | INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname //自定义文件格式
      如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。
    LOCATION指定表在HDFS的存储路径

    最佳实践:
      如果一份数据已经存储在HDFS上,并且要被多个用户或者客户端使用,最好创建外部表
      反之,最好创建内部表。

      如果不指定,就按照默认的规则存储在默认的仓库路径中。

    示例

    使用t2数据库进行操作

    (1)创建默认的内部表

     
    0: jdbc:hive2://hadoop3:10000> create table student(id int, name string, sex string, age int,department string) row format delimited fields terminated by ",";
    No rows affected (0.222 seconds)
    0: jdbc:hive2://hadoop3:10000> desc student;
    +-------------+------------+----------+
    |  col_name   | data_type  | comment  |
    +-------------+------------+----------+
    | id          | int        |          |
    | name        | string     |          |
    | sex         | string     |          |
    | age         | int        |          |
    | department  | string     |          |
    +-------------+------------+----------+
    5 rows selected (0.168 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    (2)外部表

    0: jdbc:hive2://hadoop3:10000> create external table student_ext
    (id int, name string, sex string, age int,department string) row format delimited fields terminated by "," location "/hive/student";
    No rows affected (0.248 seconds) 0: jdbc:hive2://hadoop3:10000>

    (3)分区表

     
    0: jdbc:hive2://hadoop3:10000> create external table student_ptn(id int, name string, sex string, age int,department string)
    . . . . . . . . . . . . . . .> partitioned by (city string)
    . . . . . . . . . . . . . . .> row format delimited fields terminated by ","
    . . . . . . . . . . . . . . .> location "/hive/student_ptn";
    No rows affected (0.24 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    添加分区

    0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="beijing");
    No rows affected (0.269 seconds)
    0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="shenzhen");
    No rows affected (0.236 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    如果某张表是分区表。那么每个分区的定义,其实就表现为了这张表的数据存储目录下的一个子目录
    如果是分区表。那么数据文件一定要存储在某个分区中,而不能直接存储在表中。

    (4)分桶表

     
    0: jdbc:hive2://hadoop3:10000> create external table student_bck(id int, name string, sex string, age int,department string)
    . . . . . . . . . . . . . . .> clustered by (id) sorted by (id asc, name desc) into 4 buckets
    . . . . . . . . . . . . . . .> row format delimited fields terminated by ","
    . . . . . . . . . . . . . . .> location "/hive/student_bck";
    No rows affected (0.216 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    (5)使用CTAS创建表

    作用: 就是从一个查询SQL的结果来创建一个表进行存储

    现象student表中导入数据

     
    0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/student.txt" into table student;
    No rows affected (0.715 seconds)
    0: jdbc:hive2://hadoop3:10000> select * from student;
    +-------------+---------------+--------------+--------------+---------------------+
    | student.id  | student.name  | student.sex  | student.age  | student.department  |
    +-------------+---------------+--------------+--------------+---------------------+
    | 95002       | 刘晨            | 女            | 19           | IS                  |
    | 95017       | 王风娟           | 女            | 18           | IS                  |
    | 95018       | 王一            | 女            | 19           | IS                  |
    | 95013       | 冯伟            | 男            | 21           | CS                  |
    | 95014       | 王小丽           | 女            | 19           | CS                  |
    | 95019       | 邢小丽           | 女            | 19           | IS                  |
    | 95020       | 赵钱            | 男            | 21           | IS                  |
    | 95003       | 王敏            | 女            | 22           | MA                  |
    | 95004       | 张立            | 男            | 19           | IS                  |
    | 95012       | 孙花            | 女            | 20           | CS                  |
    | 95010       | 孔小涛           | 男            | 19           | CS                  |
    | 95005       | 刘刚            | 男            | 18           | MA                  |
    | 95006       | 孙庆            | 男            | 23           | CS                  |
    | 95007       | 易思玲           | 女            | 19           | MA                  |
    | 95008       | 李娜            | 女            | 18           | CS                  |
    | 95021       | 周二            | 男            | 17           | MA                  |
    | 95022       | 郑明            | 男            | 20           | MA                  |
    | 95001       | 李勇            | 男            | 20           | CS                  |
    | 95011       | 包小柏           | 男            | 18           | MA                  |
    | 95009       | 梦圆圆           | 女            | 18           | MA                  |
    | 95015       | 王君            | 男            | 18           | MA                  |
    +-------------+---------------+--------------+--------------+---------------------+
    21 rows selected (0.342 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    使用CTAS创建表

     
    0: jdbc:hive2://hadoop3:10000> create table student_ctas as select * from student where id < 95012;
    WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution 
    engine (i.e. spark, tez) or using Hive 1.X releases. No rows affected (34.514 seconds) 0: jdbc:hive2://hadoop3:10000> select * from student_ctas . . . . . . . . . . . . . . .> ; +------------------+--------------------+-------------------+-------------------+--------------------------+ | student_ctas.id | student_ctas.name | student_ctas.sex | student_ctas.age | student_ctas.department | +------------------+--------------------+-------------------+-------------------+--------------------------+ | 95002 | 刘晨 | 女 | 19 | IS | | 95003 | 王敏 | 女 | 22 | MA | | 95004 | 张立 | 男 | 19 | IS | | 95010 | 孔小涛 | 男 | 19 | CS | | 95005 | 刘刚 | 男 | 18 | MA | | 95006 | 孙庆 | 男 | 23 | CS | | 95007 | 易思玲 | 女 | 19 | MA | | 95008 | 李娜 | 女 | 18 | CS | | 95001 | 李勇 | 男 | 20 | CS | | 95011 | 包小柏 | 男 | 18 | MA | | 95009 | 梦圆圆 | 女 | 18 | MA | +------------------+--------------------+-------------------+-------------------+--------------------------+ 11 rows selected (0.445 seconds) 0: jdbc:hive2://hadoop3:10000>

    (6)复制表结构

    0: jdbc:hive2://hadoop3:10000> create table student_copy like student;
    No rows affected (0.217 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    注意:

    如果在table的前面没有加external关键字,那么复制出来的新表。无论如何都是内部表
    如果在table的前面有加external关键字,那么复制出来的新表。无论如何都是外部表

    2、查看表

    (1)查看表列表

    查看当前使用的数据库中有哪些表

     
    0: jdbc:hive2://hadoop3:10000> show tables;
    +---------------+
    |   tab_name    |
    +---------------+
    | student       |
    | student_bck   |
    | student_copy  |
    | student_ctas  |
    | student_ext   |
    | student_ptn   |
    +---------------+
    6 rows selected (0.163 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    查看非当前使用的数据库中有哪些表

     
    0: jdbc:hive2://hadoop3:10000> show tables in myhive;
    +-----------+
    | tab_name  |
    +-----------+
    | student   |
    +-----------+
    1 row selected (0.144 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    查看数据库中以xxx开头的表

     
    0: jdbc:hive2://hadoop3:10000> show tables like 'student_c*';
    +---------------+
    |   tab_name    |
    +---------------+
    | student_copy  |
    | student_ctas  |
    +---------------+
    2 rows selected (0.13 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    (2)查看表的详细信息

    查看表的信息

     
    0: jdbc:hive2://hadoop3:10000> desc student;
    +-------------+------------+----------+
    |  col_name   | data_type  | comment  |
    +-------------+------------+----------+
    | id          | int        |          |
    | name        | string     |          |
    | sex         | string     |          |
    | age         | int        |          |
    | department  | string     |          |
    +-------------+------------+----------+
    5 rows selected (0.149 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    查看表的详细信息(格式不友好)

    0: jdbc:hive2://hadoop3:10000> desc extended student;

    查看表的详细信息(格式友好)

    0: jdbc:hive2://hadoop3:10000> desc formatted student;

    查看分区信息

    0: jdbc:hive2://hadoop3:10000> show partitions student_ptn;

    (3)查看表的详细建表语句

    0: jdbc:hive2://hadoop3:10000> show create table student_ptn;

     

    3、修改表

    (1)修改表名

    0: jdbc:hive2://hadoop3:10000> alter table student rename to new_student;

    (2)修改字段定义

    A. 增加一个字段

    0: jdbc:hive2://hadoop3:10000> alter table new_student add columns (score int);

    B. 修改一个字段的定义

    0: jdbc:hive2://hadoop3:10000> alter table new_student change name new_name string;

    C. 删除一个字段

    不支持

    D. 替换所有字段

    0: jdbc:hive2://hadoop3:10000> alter table new_student replace columns (id int, name string, address string);

    (3)修改分区信息

    A. 添加分区

    静态分区

      添加一个

    0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="chongqing");

      添加多个

    0: jdbc:hive2://hadoop3:10000> alter table student_ptn add partition(city="chongqing2") partition(city="chongqing3") partition(city="chongqing4");

    动态分区

    先向student_ptn表中插入数据,数据格式如下图

    0: jdbc:hive2://hadoop3:10000> load data local inpath "/home/hadoop/student.txt" into table student_ptn partition(city="beijing");

    现在我把这张表的内容直接插入到另一张表student_ptn_age中,并实现sex为动态分区(不指定到底是哪中性别,让系统自己分配决定)

    首先创建student_ptn_age并指定分区为age

    0: jdbc:hive2://hadoop3:10000> create table student_ptn_age(id int,name string,sex string,department string) partitioned by (age int);

    从student_ptn表中查询数据并插入student_ptn_age表中

     
    0: jdbc:hive2://hadoop3:10000> insert overwrite table student_ptn_age partition(age)
    . . . . . . . . . . . . . . .> select id,name,sex,department,age from student_ptn;
    WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
    No rows affected (27.905 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    B. 修改分区

    修改分区,一般来说,都是指修改分区的数据存储目录

    在添加分区的时候,直接指定当前分区的数据存储目录

    0: jdbc:hive2://hadoop3:10000> alter table student_ptn add if not exists partition(city='beijing') 
    . . . . . . . . . . . . . . .> location '/student_ptn_beijing' partition(city='cc') location '/student_cc';
    No rows affected (0.306 seconds)
    0: jdbc:hive2://hadoop3:10000> 

    修改已经指定好的分区的数据存储目录

    0: jdbc:hive2://hadoop3:10000> alter table student_ptn partition (city='beijing') set location '/student_ptn_beijing';

    此时原先的分区文件夹仍存在,但是在往分区添加数据时,只会添加到新的分区目录

    C. 删除分区

    0: jdbc:hive2://hadoop3:10000> alter table student_ptn drop partition (city='beijing');

    4、删除表

    0: jdbc:hive2://hadoop3:10000> drop table new_student;

     

    5、清空表

    0: jdbc:hive2://hadoop3:10000> truncate table student_ptn;

    其他辅助命令

     

  • 相关阅读:
    [LeetCode] 34. 在排序数组中查找元素的第一个和最后一个位置
    [LeetCode] 32. 最长有效括号
    [LeetCode] 31. 下一个排列
    [LeetCode] 30. 串联所有单词的子串
    [LeetCode] 29. 两数相除
    [LeetCode] 27. 移除元素
    转:畅享云时代:开发者必备的8个最佳云端集成开发环境
    转:前端集锦:十款精心挑选的在线 CSS3 代码生成工具
    转:So Easy!让开发人员更轻松的工具和资源
    转:Backbone与Angular的比较
  • 原文地址:https://www.cnblogs.com/blazeZzz/p/9753206.html
Copyright © 2011-2022 走看看