zoukankan      html  css  js  c++  java
  • POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph

    题目链接

    题意:给定一个有向图,求出度为0的强连通分量

    思路:缩点搞就可以

    代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <stack>
    using namespace std;
    
    const int N = 5005;
    
    int n, m;
    vector<int> g[N], save[N];
    stack<int> S;
    
    int pre[N], dfn[N], dfs_clock, sccno[N], sccn;
    
    void dfs_scc(int u) {
    	pre[u] = dfn[u] = ++dfs_clock;
    	S.push(u);
    	for (int i = 0; i < g[u].size(); i++) {
    		int v = g[u][i];
    		if (!pre[v]) {
    			dfs_scc(v);
    			dfn[u] = min(dfn[u], dfn[v]);
    		} else if (!sccno[v]) dfn[u] = min(dfn[u], pre[v]);
    	}
    	if (dfn[u] == pre[u]) {
    		sccn++;
    		save[sccn].clear();
    		while (1) {
    			int x = S.top(); S.pop();
    			save[sccn].push_back(x);
    			sccno[x] = sccn;
    			if (x == u) break;
    		}
    	}
    }
    
    void find_scc() {
    	dfs_clock = sccn = 0;
    	memset(pre, 0, sizeof(pre));
    	memset(sccno, 0, sizeof(sccno));
    	for (int i = 1; i <= n; i++)
    		if (!pre[i]) dfs_scc(i);
    }
    
    int out[N];
    int ans[N], an;
    
    int main() {
    	while (~scanf("%d", &n) && n) {
    		for (int i = 1; i <= n; i++) g[i].clear();
    		scanf("%d", &m);
    		int u, v;
    		while (m--) {
    			scanf("%d%d", &u, &v);
    			g[u].push_back(v);
    		}
    		find_scc();
    		memset(out, 0, sizeof(out));
    		for (int i = 1; i <= n; i++) {
    			for (int j = 0; j < g[i].size(); j++) {
    				int v = g[i][j];
    				if (sccno[i] != sccno[v]) {
    					out[sccno[i]]++;
    				}
    			}
    		}
    		an = 0;
    		for (int i = 1; i <= sccn; i++) {
    			if (!out[i]) {
    				for (int j = 0; j < save[i].size(); j++)
    					ans[an++] = save[i][j];
    			}
    		}
    		sort(ans, ans + an);
    		for (int i = 0; i < an; i++)
    			printf("%d%c", ans[i], i == an - 1 ? '
    ' : ' ');
    	}
    	return 0;
    }


  • 相关阅读:
    HTML撑起浮动子元素得父元素高度
    H5弃用标签和属性
    HTML常用转义字符
    php微信公众号开发入门
    常见正则表达式总结
    解决上下两个相邻图片之间存在默认间距的问题
    移动端真机调试的两种方法
    H5使用小结
    CF 11D
    Codeforces Round #639 (Div. 2) C Hilbert's Hotel (数学)
  • 原文地址:https://www.cnblogs.com/blfbuaa/p/6900088.html
Copyright © 2011-2022 走看看