zoukankan      html  css  js  c++  java
  • Modified LCS

    题目链接

    • 题意:
      给两个等差数列的长度,起点和数列的添加值,求两个数列中有几个数同样
    • 分析:
      将等差数列的通项公式化简后能够得到扩展欧几里得的结构,直接计算就可以
    • 反思:
      求出方程的一个解后。得到的是下标。此时假设继续用下标推断会比較麻烦,由于同一个数在两个序列中的下标是不一样的,所以须要两个数列的下标范围均须要推断是否合法。而假设採用值推断,由于两个数列的满足题意的值是同样的。所以直接採用值推断会简单非常多

      可是,对于这个题目。上边的方法会带来一个问题。题目中的最后一项有可能超过long long的范围从而出错。正确的方法是,求出第一个数后转换成下标。x为在第一个数列中的下标,y为在第二个数列中的下标。dx表示x的变化量。dy表示y的变化量。那么ans = min((n1 - x) / dx, (n2 - y) / dy) + 1。这样转换成下标操作就能够避免计算最后一个数是多少(出错)
    void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d)
    {
        if (!b)
            x = 1, y = 0, d = a;
        else
        {
            ex_gcd(b, a % b, y, x, d);
            y -= x * (a / b);
        }
    }
    
    int main()
    {
        //freopen("0.txt", "r", stdin);
        int T;
        RI(T);
        FE(kase, 1, T)
        {
            LL n1, n2, f1, f2, d1, d2;
            LL a, b, v, x, y, dx, dy, gcd, lcm;
            cin >> n1 >> f1 >> d1 >> n2 >> f2 >> d2;
            a = d1, b = -d2, v = d1 - d2 + f2 - f1;
            ex_gcd(a, b, x, y, gcd);
            lcm = abs(d1 * d2 / gcd);
            if (v % gcd != 0)
                puts("0");
            else
            {
                x *= v / gcd;
                x = f1 + (x - 1) * d1;
                dx = abs(b / gcd * d1);
                dy = abs(a / gcd);
                LL l = max(f1, f2);
                x = ((x - l) % dx + dx) % dx + l;
                y = (x - f2) / d2 + 1;
                x = (x - f1) / d1 + 1;
                dx /= d1;
                y = min((n1 - x) / dx, (n2 - y) / dy) + 1;
                if (y >= 0)
                    cout << y << endl;
                else
                    puts("0");
            }
        }
        return 0;
    }
  • 相关阅读:
    [大山中学模拟赛] 2016.9.17
    [DP优化方法之斜率DP]
    Gengxin讲STL系列——String
    小班讲课之动态规划基础背包问题
    ubuntu安装体验
    小班出题之字符串基础检测
    G
    B
    小项目--反eclass
    树--天平问题
  • 原文地址:https://www.cnblogs.com/blfbuaa/p/7238584.html
Copyright © 2011-2022 走看看