zoukankan      html  css  js  c++  java
  • POJ1159——Palindrome

    Palindrome
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 53647   Accepted: 18522

    Description

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

    As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

    Input

    Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

    Output

    Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

    Sample Input

    5
    Ab3bd

    Sample Output

    2

    Source

    IOI 2000

    问你增加多少字符使得字符串变成回文串

    我们对字符串和他的逆序串求一个最长公共子序列,这样一来。LCS里的一定是回文的,而其它的一定不会回文,所以必须在对应位置插入那些字符使得他们对称,最后整个串才干够回文

    #include <map>    
    #include <set>    
    #include <list>    
    #include <stack>    
    #include <queue>    
    #include <vector>    
    #include <cstdio>    
    #include <cmath>    
    #include <cstring>    
    #include <iostream>    
    #include <algorithm>    
        
    using namespace std;
    
    char str1[5010];
    char str2[5010];
    int dp[2][5010];
    
    int main()
    {
    	int len;
    	while (~scanf("%d", &len))
    	{
    		scanf("%s", str1);
    		for (int i = 0; i < len; i++)
    		{
    			str2[i] = str1[len - i - 1];
    		}
    		str2[len] = '';
    		memset (dp, 0, sizeof(dp) );
    		for (int i = 1; i <= len; i++)
    		{
    			for (int j = 1; j <= len; j++)
    			{
    				if (str1[i - 1] == str2[j - 1])
    				{
    					dp[i % 2][j] = dp[(i - 1) % 2][j - 1] + 1;
    				}
    				else
    				{
    					dp[i % 2][j] = max(dp[(i - 1) % 2][j], dp[i % 2][j - 1]);
    				}
    			}
    		}
    		printf("%d
    ", len - dp[len % 2][len]);
    	}
    }


  • 相关阅读:
    2019 CCSU GOLD!!!
    HDU 3397 Sequence operation(线段树区间染色加区间合并)
    浅谈线段树区间更新里的懒标记
    HDU 3308 LCIS(线段树区间合并)
    51Nod 1593 公园晨跑(RMQ,ST表)
    第四次作业
    lintcode-166-链表倒数第n个节点
    lintcode-163-不同的二叉查找树
    lintcode-162-矩阵归零
    lintcode-161-旋转图像
  • 原文地址:https://www.cnblogs.com/blfbuaa/p/7365763.html
Copyright © 2011-2022 走看看