zoukankan      html  css  js  c++  java
  • HDU3549 Flow Problem 【最大流量】

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 8387    Accepted Submission(s): 3908


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     

    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     

    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     

    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     

    Sample Output
    Case 1: 1 Case 2: 2
     

    Author
    HyperHexagon
     

    Source
    水题。

    #include <stdio.h>
    #include <string.h>
    
    #define maxn 20
    #define maxm 2010
    #define inf 0x3f3f3f3f
    
    int head[maxn], n, m, source, sink, id; // n个点m条边
    struct Node {
        int u, v, c, next;
    } E[maxm];
    int que[maxn], pre[maxn], Layer[maxn];
    bool vis[maxn];
    
    void addEdge(int u, int v, int c) {
        E[id].u = u; E[id].v = v;
        E[id].c = c; E[id].next = head[u];
        head[u] = id++;
    
        E[id].u = v; E[id].v = u;
        E[id].c = 0; E[id].next = head[v];
        head[v] = id++;
    }
    
    void getMap() {
        int u, v, c; id = 0;
        scanf("%d%d", &n, &m);
        memset(head, -1, sizeof(int) * (n + 1));
        source = 1; sink = n;
        while(m--) {
            scanf("%d%d%d", &u, &v, &c);
            addEdge(u, v, c);
        }
    }
    
    bool countLayer() {
        memset(Layer, 0, sizeof(int) * (n + 1));
        int id = 0, front = 0, u, v, i;
        Layer[source] = 1; que[id++] = source;
        while(front != id) {
            u = que[front++];
            for(i = head[u]; i != -1; i = E[i].next) {
                v = E[i].v;
                if(E[i].c && !Layer[v]) {
                    Layer[v] = Layer[u] + 1;
                    if(v == sink) return true;
                    else que[id++] = v;
                }
            }
        }
        return false;
    }
    
    int Dinic() {
        int i, u, v, minCut, maxFlow = 0, pos, id = 0;
        while(countLayer()) {
            memset(vis, 0, sizeof(bool) * (n + 1));
            memset(pre, -1, sizeof(int) * (n + 1));
            que[id++] = source; vis[source] = 1;
            while(id) {
                u = que[id - 1];
                if(u == sink) {
                    minCut = inf;
                    for(i = pre[sink]; i != -1; i = pre[E[i].u])
                        if(minCut > E[i].c) {
                            minCut = E[i].c; pos = E[i].u;
                        }
                    maxFlow += minCut;
                    for(i = pre[sink]; i != -1; i = pre[E[i].u]) {
                        E[i].c -= minCut;
                        E[i^1].c += minCut;
                    }
                    while(que[id-1] != pos)
                        vis[que[--id]] = 0;
                } else {
                    for(i = head[u]; i != -1; i = E[i].next)
                        if(E[i].c && Layer[u] + 1 == Layer[v = E[i].v] && !vis[v]) {
                            vis[v] = 1; que[id++] = v; pre[v] = i; break;
                        }
                    if(i == -1) --id;
                }
            }
        }
        return maxFlow;
    }
    
    void solve(int i) {
        printf("Case %d: %d
    ", i, Dinic());
    }
    
    int main() {
        int t, cas;
        scanf("%d", &t);
        for(cas = 1; cas <= t; ++cas) {
            getMap();
            solve(cas);
        }
    }


    版权声明:本文博客原创文章。博客,未经同意,不得转载。

  • 相关阅读:
    深度学习笔记之关于基本思想、浅层学习、Neural Network和训练过程(三)
    深度学习笔记之关于特征(二)
    深度学习笔记之概述、背景和人脑视觉机理(一)
    初步认识深度学习笔记(一)
    EM(期望最大化)算法初步认识
    Ubuntu16.04下安装Tensorflow GPU版本(图文详解)
    Ubuntu16.04下安装Tensorflow CPU版本(图文详解)
    [转]粤语学习
    [转]微信公众平台开发(十) 消息回复总结
    [转]C#开发微信公众平台-就这么简单
  • 原文地址:https://www.cnblogs.com/blfshiye/p/4681131.html
Copyright © 2011-2022 走看看