zoukankan      html  css  js  c++  java
  • Brackets (区间DP)

    个人心得:今天就做了这些区间DP,这一题开始想用最长子序列那些套路的,后面发现不满足无后效性的问题,即(,)的配对

    对结果有一定的影响,后面想着就用上一题的思想就慢慢的从小一步一步递增,后面想着越来越大时很多重复,应该要进行分割,

    后面想想又不对,就去看题解了,没想到就是分割,还是动手能力太差,还有思维不够。

    1 for(int j=0;j+i<ch.size();j++)
    2                     {
    3                     if(check(j,j+i))
    4                         dp[j][j+i]=dp[j+1][j+i-1]+2;
    5                         for(int m=j;m<=j+i;m++)
    6                     dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+1][j+i]);
    7                     }

    分割并一次求最大值。动态规划真的是一脸懵逼样,多思考,多瞎想吧,呼~

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cmath>
     4 #include<cstring>
     5 #include<iomanip>
     6 #include<string>
     7 #include<algorithm>
     8 using namespace std;
     9 int money[205];
    10 int dp[205][205];
    11 string ch;
    12 const int inf=999999;
    13 int check(int i,int j){
    14     if((ch[i]=='('&&ch[j]==')')||(ch[i]=='['&&ch[j]==']'))
    15         return 1;
    16       return 0;
    17 }
    18 void init(){
    19    for(int i=0;i<ch.size();i++)
    20      for(int j=0;j<ch.size();j++)
    21         dp[i][j]=0;
    22 }
    23 int main(){
    24     int n,m;
    25     while(getline(cin,ch,'
    ')){
    26             if(ch=="end") break;
    27             init();
    28             for(int k=0;k<ch.size()-1;k++)
    29                if(check(k,k+1))
    30                dp[k][k+1]=2;
    31                else
    32                 dp[k][k+1]=0;
    33                 for(int i=2;i<ch.size();i++)
    34                {
    35                    for(int j=0;j+i<ch.size();j++)
    36                     {
    37                     if(check(j,j+i))
    38                         dp[j][j+i]=dp[j+1][j+i-1]+2;
    39                         for(int m=j;m<=j+i;m++)
    40                     dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+1][j+i]);
    41                     }
    42 
    43                }
    44             cout<<dp[0][ch.size()-1]<<endl;
    45     }
    46     return 0;
    47 }


  • 相关阅读:
    shell 重启 tomcat 脚本
    shell 复制/备份文件 脚本
    在 CentOS 上安装 node.js
    架构漫谈(一):什么是架构? -王概凯
    冷静审视人工智能技术的本质 | 一图看懂新一代人工智能知识体系大全
    时代在变
    什么是设计思维Design Thinking——风靡全球的创造力培养方法
    金融即服务(FaaS),将开启场景化金融新格局
    devops工具
    京东金融-供应链金融业务介绍
  • 原文地址:https://www.cnblogs.com/blvt/p/7371994.html
Copyright © 2011-2022 走看看