zoukankan      html  css  js  c++  java
  • POJ_2533 Frogger 最小瓶颈路

    题目链接:http://poj.org/problem?id=2533

    该题其实等价于求两点之间的最小瓶颈路-min(d[i][j], max(d[i][k], d[k][j])),即最短路中的最大值

    用Floyd算法可以在O(n3)内求出,鉴于此题n=200,因此直接上Floyd

     1 #include <cstdio>
     2 #include <cstdlib>
     3 #include <cmath>
     4 #include <cstring>
     5 #include <algorithm>
     6 #include <string>
     7 using namespace std;
     8 #define inf 0x3f3f3f3f
     9 #define maxm 30005
    10 #define maxn 205
    11 double d[maxn][maxn];
    12 int n, m;
    13 int x[maxn], y[maxn];
    14 
    15 void floyd(){
    16     for(int k = 0; k < n; k++){
    17         for(int i = 0; i < n; i++)
    18             for(int j = 0; j < n; j++)
    19                 d[i][j] = min(d[i][j], max(d[i][k], d[k][j]));
    20     }
    21 }
    22 
    23 int main(){
    24     int cnt = 1;
    25     while(scanf("%d", &n) && n){
    26         for(int i = 0; i < n; i++){
    27             for(int j = 0; j < n; j++){
    28                 if(i == j) d[i][j] = 0;
    29                 d[i][j] = inf;
    30             }
    31         }
    32         for(int i = 0; i < n; i++){
    33             scanf("%d %d", &x[i], &y[i]);
    34         }
    35         for(int i = 0; i < n; i++){
    36             for(int j = 0; j < n; j++){
    37                 d[i][j] = sqrt(pow(x[i] - x[j], 2) + pow(y[i] - y[j], 2));
    38             }
    39         }
    40         floyd();
    41         printf("Scenario #%d
    ", cnt++);
    42         printf("Frog Distance = %.3f
    
    ", d[0][1]);
    43     }
    44 }

    题目:

    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 51551   Accepted: 22931

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
  • 相关阅读:
    Go 数组与切片
    Go 常用函数
    Go 函数,包(二)
    函数,包及错误处理
    Go 循环控制
    Go 流程控制
    Go 获取键盘输入,进制转换
    Go 指针,标识符命名规范及关键字
    Go 变量及基本数据类型3
    一文详解微服务架构
  • 原文地址:https://www.cnblogs.com/bolderic/p/6815765.html
Copyright © 2011-2022 走看看