zoukankan      html  css  js  c++  java
  • SPOJ DCEPC11B

    题目链接http://www.spoj.com/problems/DCEPC11B/

    题目大意:求N!对P取余的结果。P是素数,并且abs(N-P)<=1000。

    解题思路wiki-费马小定理

    Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as

    a^p equiv a pmod p.

    For example, if a = 2 and p = 7, 27 = 128, and 128 − 2 = 7 × 18 is an integer multiple of 7.

    If a is not divisible by p, Fermat's little theorem is equivalent to the statement that a p − 1 − 1 is an integer multiple of p, or in symbols

    a^{p-1} equiv 1 pmod p.

    For example, if a = 2 and p = 7 then 26 = 64 and 64 − 1 = 63 is thus a multiple of 7.

    我们设 x = N!,那么由费马小定理:x * (n+1) * (n+2) * ... * (p-1) % p = p - 1.而(n+1) * (n+2) * ... * (p-1) % p 可以计算得到,那么有:

    a * x % p = p - 1  即 a * x = k*p + p - 1 然后使用扩展欧几里得算法计算出x即可。

    注意P<=N为0

    代码:

     1 ll n, p;
     2 
     3 ll ext_gcd(ll a, ll b, ll &d, ll &x, ll &y){
     4     if(!b) {
     5         d = a; x = 1; y = 0;
     6     }
     7     else{
     8         ext_gcd(b, a % b, d, y, x); y -= x * (a / b);
     9     }
    10 }
    11 void solve(){
    12     if(p <= n) {
    13         cout << 0 << endl;
    14         return;
    15     }
    16     ll a = 1;
    17     for(int i = n + 1; i <= p - 1; i++){
    18         a *= i; 
    19         a %= p;
    20     }
    21     ll b = p, d, x, y;
    22     ext_gcd(a, b, d, x, y);
    23     x *= (p - 1) / d;
    24     if(x < 0) x += (abs(x) / p + 1) * p;
    25     cout << x % p << endl;
    26 }
    27 int main(){
    28     ios::sync_with_stdio(false);
    29     int t;
    30     cin >> t;
    31     while(t--){
    32         cin >> n >> p;
    33         solve();
    34     }
    35 }

    题目:

    DCEPC11B - Boring Factorials

    Sameer and Arpit want to overcome their fear of Maths and so they have been recently practicing Maths problems a lot. Aman, their friend has been helping them out. But as it goes, Sameer and Arpit have got bored of problems involving factorials. Reason being, the factorials are too easy to calculate in problems as they only require the residue modulo some prime and that is easy to calculate in linear time. So to make things interesting for them, Aman - The Mathemagician, gives them an interesting task. He gives them a prime number P and an integer N close to P, and asks them to find N! modulo P. He asks T such queries.

    Input

    First line contains an integer T, the number of queries asked.

    Next T lines contains T queries of the form “N P”. (quotes for clarity)

    Output

    Output exactly T lines, containing N! modulo P.

    Example

    Input:
    3
    2 5
    5 11
    21 71
    
    Output:
    2
    10
    6
    Constraints:

    1 <= T <= 1000

    1 < P <= 2*10^9

    1 <= N <= 2*10^9

    Abs(N-P) <= 1000
  • 相关阅读:
    2019年北航OO第三次博客总结
    2019年北航OO第二次博客总结
    2019年北航OO第一次博客总结
    BUAA_OO第四单元总结性博客作业——UML(Floyd实现规则检查?)
    BUAA_OO第三单元总结性博客作业——JML
    BUAA_OO第二单元总结性博客作业——多线程电梯架构
    BUAA_OO第一单元总结性博客作业——表达式求导
    免费虚拟主机 免费云服务器
    .net core API 使用swagger
    Socket学习
  • 原文地址:https://www.cnblogs.com/bolderic/p/7399862.html
Copyright © 2011-2022 走看看