zoukankan      html  css  js  c++  java
  • SPOJ DCEPC11B

    题目链接http://www.spoj.com/problems/DCEPC11B/

    题目大意:求N!对P取余的结果。P是素数,并且abs(N-P)<=1000。

    解题思路wiki-费马小定理

    Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic, this is expressed as

    a^p equiv a pmod p.

    For example, if a = 2 and p = 7, 27 = 128, and 128 − 2 = 7 × 18 is an integer multiple of 7.

    If a is not divisible by p, Fermat's little theorem is equivalent to the statement that a p − 1 − 1 is an integer multiple of p, or in symbols

    a^{p-1} equiv 1 pmod p.

    For example, if a = 2 and p = 7 then 26 = 64 and 64 − 1 = 63 is thus a multiple of 7.

    我们设 x = N!,那么由费马小定理:x * (n+1) * (n+2) * ... * (p-1) % p = p - 1.而(n+1) * (n+2) * ... * (p-1) % p 可以计算得到,那么有:

    a * x % p = p - 1  即 a * x = k*p + p - 1 然后使用扩展欧几里得算法计算出x即可。

    注意P<=N为0

    代码:

     1 ll n, p;
     2 
     3 ll ext_gcd(ll a, ll b, ll &d, ll &x, ll &y){
     4     if(!b) {
     5         d = a; x = 1; y = 0;
     6     }
     7     else{
     8         ext_gcd(b, a % b, d, y, x); y -= x * (a / b);
     9     }
    10 }
    11 void solve(){
    12     if(p <= n) {
    13         cout << 0 << endl;
    14         return;
    15     }
    16     ll a = 1;
    17     for(int i = n + 1; i <= p - 1; i++){
    18         a *= i; 
    19         a %= p;
    20     }
    21     ll b = p, d, x, y;
    22     ext_gcd(a, b, d, x, y);
    23     x *= (p - 1) / d;
    24     if(x < 0) x += (abs(x) / p + 1) * p;
    25     cout << x % p << endl;
    26 }
    27 int main(){
    28     ios::sync_with_stdio(false);
    29     int t;
    30     cin >> t;
    31     while(t--){
    32         cin >> n >> p;
    33         solve();
    34     }
    35 }

    题目:

    DCEPC11B - Boring Factorials

    Sameer and Arpit want to overcome their fear of Maths and so they have been recently practicing Maths problems a lot. Aman, their friend has been helping them out. But as it goes, Sameer and Arpit have got bored of problems involving factorials. Reason being, the factorials are too easy to calculate in problems as they only require the residue modulo some prime and that is easy to calculate in linear time. So to make things interesting for them, Aman - The Mathemagician, gives them an interesting task. He gives them a prime number P and an integer N close to P, and asks them to find N! modulo P. He asks T such queries.

    Input

    First line contains an integer T, the number of queries asked.

    Next T lines contains T queries of the form “N P”. (quotes for clarity)

    Output

    Output exactly T lines, containing N! modulo P.

    Example

    Input:
    3
    2 5
    5 11
    21 71
    
    Output:
    2
    10
    6
    Constraints:

    1 <= T <= 1000

    1 < P <= 2*10^9

    1 <= N <= 2*10^9

    Abs(N-P) <= 1000
  • 相关阅读:
    哈希表
    java读写xml文件
    Java学习之Hessian通信基础
    DevExpress 中 gridView编辑单元格,失去焦点后,内容继而消失
    DevExpress控件的GridControl控件小结
    Spring 架构图
    WebLogic和Tomcat的区别
    EJB到底是什么,真的那么神秘吗??
    C# 枚举类型
    关于C#的Main(String[] args)参数输入问题
  • 原文地址:https://www.cnblogs.com/bolderic/p/7399862.html
Copyright © 2011-2022 走看看