>>> from sklearn import preprocessing
>>> import numpy as np
>>> a=np.array([[1.0,2.0,3.0], [4.0,5.0,9.0], [20,40.0, 80.0]])
>>> scale(a, axis=0)
array([[-0.87929684, -0.79227978, -0.79115821],
[-0.5195845 , -0.6183647 , -0.61958173],
[ 1.39888134, 1.41064448, 1.41073994]])
>>> a.std(axis=0)
array([ 8.33999734, 17.24979871, 34.96982827])
>>> a.mean(axis=0)
array([ 8.33333333, 15.66666667, 30.66666667])
>>> scale(a)
array([[-0.87929684, -0.79227978, -0.79115821],
[-0.5195845 , -0.6183647 , -0.61958173],
[ 1.39888134, 1.41064448, 1.41073994]])
>>> scale(a)*a.std(axis=0)+a.mean(axis=0)
array([[ 1., 2., 3.],
[ 4., 5., 9.],
[ 20., 40., 80.]])