zoukankan      html  css  js  c++  java
  • tensorflow实现svm iris二分类——本质上在使用梯度下降法求解线性回归(loss是定制的而已)

    iris二分类

    # Linear Support Vector Machine: Soft Margin
    # ----------------------------------
    #
    # This function shows how to use TensorFlow to
    # create a soft margin SVM
    #
    # We will use the iris data, specifically:
    #  x1 = Sepal Length
    #  x2 = Petal Width
    # Class 1 : I. setosa
    # Class -1: not I. setosa
    #
    # We know here that x and y are linearly seperable
    # for I. setosa classification.
    
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    from sklearn import datasets
    from tensorflow.python.framework import ops
    ops.reset_default_graph()
    
    # Set random seeds
    np.random.seed(7)
    tf.set_random_seed(7)
    
    # Create graph
    sess = tf.Session()
    
    # Load the data
    # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
    iris = datasets.load_iris()
    x_vals = np.array([[x[0], x[3]] for x in iris.data])
    y_vals = np.array([1 if y == 0 else -1 for y in iris.target])
    
    # Split data into train/test sets
    train_indices = np.random.choice(len(x_vals),
                                     round(len(x_vals)*0.9),
                                     replace=False)
    test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
    x_vals_train = x_vals[train_indices]
    x_vals_test = x_vals[test_indices]
    y_vals_train = y_vals[train_indices]
    y_vals_test = y_vals[test_indices]
    
    # Declare batch size
    batch_size = 135
    
    # Initialize placeholders
    x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
    y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
    
    # Create variables for linear regression
    A = tf.Variable(tf.random_normal(shape=[2, 1]))
    b = tf.Variable(tf.random_normal(shape=[1, 1]))
    
    # Declare model operations
    model_output = tf.subtract(tf.matmul(x_data, A), b)
    
    # Declare vector L2 'norm' function squared
    l2_norm = tf.reduce_sum(tf.square(A))
    
    # Declare loss function
    # Loss = max(0, 1-pred*actual) + alpha * L2_norm(A)^2
    # L2 regularization parameter, alpha
    alpha = tf.constant([0.01])
    # Margin term in loss
    classification_term = tf.reduce_mean(tf.maximum(0., tf.subtract(1., tf.multiply(model_output, y_target))))
    # Put terms together
    loss = tf.add(classification_term, tf.multiply(alpha, l2_norm))
    
    # Declare prediction function
    prediction = tf.sign(model_output)
    accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, y_target), tf.float32))
    
    # Declare optimizer
    my_opt = tf.train.GradientDescentOptimizer(0.01)
    train_step = my_opt.minimize(loss)
    
    # Initialize variables
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # Training loop
    loss_vec = []
    train_accuracy = []
    test_accuracy = []
    for i in range(500):
        rand_index = np.random.choice(len(x_vals_train), size=batch_size)
        rand_x = x_vals_train[rand_index]
        rand_y = np.transpose([y_vals_train[rand_index]])
        sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
    
        temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
        loss_vec.append(temp_loss)
    
        train_acc_temp = sess.run(accuracy, feed_dict={
            x_data: x_vals_train,
            y_target: np.transpose([y_vals_train])})
        train_accuracy.append(train_acc_temp)
    
        test_acc_temp = sess.run(accuracy, feed_dict={
            x_data: x_vals_test,
            y_target: np.transpose([y_vals_test])})
        test_accuracy.append(test_acc_temp)
    
        if (i + 1) % 100 == 0:
            print('Step #{} A = {}, b = {}'.format(
                str(i+1),
                str(sess.run(A)),
                str(sess.run(b))
            ))
            print('Loss = ' + str(temp_loss))
    
    # Extract coefficients
    [[a1], [a2]] = sess.run(A)
    [[b]] = sess.run(b)
    slope = -a2/a1
    y_intercept = b/a1
    
    # Extract x1 and x2 vals
    x1_vals = [d[1] for d in x_vals]
    
    # Get best fit line
    best_fit = []
    for i in x1_vals:
        best_fit.append(slope*i+y_intercept)
    
    # Separate I. setosa
    setosa_x = [d[1] for i, d in enumerate(x_vals) if y_vals[i] == 1]
    setosa_y = [d[0] for i, d in enumerate(x_vals) if y_vals[i] == 1]
    not_setosa_x = [d[1] for i, d in enumerate(x_vals) if y_vals[i] == -1]
    not_setosa_y = [d[0] for i, d in enumerate(x_vals) if y_vals[i] == -1]
    
    # Plot data and line
    plt.plot(setosa_x, setosa_y, 'o', label='I. setosa')
    plt.plot(not_setosa_x, not_setosa_y, 'x', label='Non-setosa')
    plt.plot(x1_vals, best_fit, 'r-', label='Linear Separator', linewidth=3)
    plt.ylim([0, 10])
    plt.legend(loc='lower right')
    plt.title('Sepal Length vs Pedal Width')
    plt.xlabel('Pedal Width')
    plt.ylabel('Sepal Length')
    plt.show()
    
    # Plot train/test accuracies
    plt.plot(train_accuracy, 'k-', label='Training Accuracy')
    plt.plot(test_accuracy, 'r--', label='Test Accuracy')
    plt.title('Train and Test Set Accuracies')
    plt.xlabel('Generation')
    plt.ylabel('Accuracy')
    plt.legend(loc='lower right')
    plt.show()
    
    # Plot loss over time
    plt.plot(loss_vec, 'k-')
    plt.title('Loss per Generation')
    plt.xlabel('Generation')
    plt.ylabel('Loss')
    plt.show()

    下面例子数据集可能更好看;

    # SVM Regression
    #----------------------------------
    #
    # This function shows how to use TensorFlow to
    # solve support vector regression. We are going
    # to find the line that has the maximum margin
    # which INCLUDES as many points as possible
    #
    # We will use the iris data, specifically:
    #  y = Sepal Length
    #  x = Pedal Width
    
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    from sklearn import datasets
    from tensorflow.python.framework import ops
    ops.reset_default_graph()
    
    # Create graph
    sess = tf.Session()
    
    # Load the data
    # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
    iris = datasets.load_iris()
    x_vals = np.array([x[3] for x in iris.data])
    y_vals = np.array([y[0] for y in iris.data])
    
    # Split data into train/test sets
    train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)
    test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))
    x_vals_train = x_vals[train_indices]
    x_vals_test = x_vals[test_indices]
    y_vals_train = y_vals[train_indices]
    y_vals_test = y_vals[test_indices]
    
    # Declare batch size
    batch_size = 50
    
    # Initialize placeholders
    x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
    y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
    
    # Create variables for linear regression
    A = tf.Variable(tf.random_normal(shape=[1,1]))
    b = tf.Variable(tf.random_normal(shape=[1,1]))
    
    # Declare model operations
    model_output = tf.add(tf.matmul(x_data, A), b)
    
    # Declare loss function
    # = max(0, abs(target - predicted) + epsilon)
    # 1/2 margin width parameter = epsilon
    epsilon = tf.constant([0.5])
    # Margin term in loss
    loss = tf.reduce_mean(tf.maximum(0., tf.subtract(tf.abs(tf.subtract(model_output, y_target)), epsilon)))
    
    # Declare optimizer
    my_opt = tf.train.GradientDescentOptimizer(0.075)
    train_step = my_opt.minimize(loss)
    
    # Initialize variables
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # Training loop
    train_loss = []
    test_loss = []
    for i in range(200):
        rand_index = np.random.choice(len(x_vals_train), size=batch_size)
        rand_x = np.transpose([x_vals_train[rand_index]])
        rand_y = np.transpose([y_vals_train[rand_index]])
        sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
        
        temp_train_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])})
        train_loss.append(temp_train_loss)
        
        temp_test_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])})
        test_loss.append(temp_test_loss)
        if (i+1)%50==0:
            print('-----------')
            print('Generation: ' + str(i+1))
            print('A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))
            print('Train Loss = ' + str(temp_train_loss))
            print('Test Loss = ' + str(temp_test_loss))
    
    # Extract Coefficients
    [[slope]] = sess.run(A)
    [[y_intercept]] = sess.run(b)
    [width] = sess.run(epsilon)
    
    # Get best fit line
    best_fit = []
    best_fit_upper = []
    best_fit_lower = []
    for i in x_vals:
      best_fit.append(slope*i+y_intercept)
      best_fit_upper.append(slope*i+y_intercept+width)
      best_fit_lower.append(slope*i+y_intercept-width)
    
    # Plot fit with data
    plt.plot(x_vals, y_vals, 'o', label='Data Points')
    plt.plot(x_vals, best_fit, 'r-', label='SVM Regression Line', linewidth=3)
    plt.plot(x_vals, best_fit_upper, 'r--', linewidth=2)
    plt.plot(x_vals, best_fit_lower, 'r--', linewidth=2)
    plt.ylim([0, 10])
    plt.legend(loc='lower right')
    plt.title('Sepal Length vs Pedal Width')
    plt.xlabel('Pedal Width')
    plt.ylabel('Sepal Length')
    plt.show()
    
    # Plot loss over time
    plt.plot(train_loss, 'k-', label='Train Set Loss')
    plt.plot(test_loss, 'r--', label='Test Set Loss')
    plt.title('L2 Loss per Generation')
    plt.xlabel('Generation')
    plt.ylabel('L2 Loss')
    plt.legend(loc='upper right')
    plt.show()
    

     

    高斯核函数的应用,其实也可以自定义很多核函数:

    # Illustration of Various Kernels
    #----------------------------------
    #
    # This function wll illustrate how to
    # implement various kernels in TensorFlow.
    #
    # Linear Kernel:
    # K(x1, x2) = t(x1) * x2
    #
    # Gaussian Kernel (RBF):
    # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2)
    
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    from sklearn import datasets
    from tensorflow.python.framework import ops
    ops.reset_default_graph()
    
    # Create graph
    sess = tf.Session()
    
    # Generate non-lnear data
    (x_vals, y_vals) = datasets.make_circles(n_samples=350, factor=.5, noise=.1)
    y_vals = np.array([1 if y==1 else -1 for y in y_vals])
    class1_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==1]
    class1_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==1]
    class2_x = [x[0] for i,x in enumerate(x_vals) if y_vals[i]==-1]
    class2_y = [x[1] for i,x in enumerate(x_vals) if y_vals[i]==-1]
    
    # Declare batch size
    batch_size = 350
    
    # Initialize placeholders
    x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
    y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
    prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32)
    
    # Create variables for svm
    b = tf.Variable(tf.random_normal(shape=[1,batch_size]))
    
    # Apply kernel
    # Linear Kernel
    # my_kernel = tf.matmul(x_data, tf.transpose(x_data))
    
    # Gaussian (RBF) kernel
    gamma = tf.constant(-50.0)
    dist = tf.reduce_sum(tf.square(x_data), 1)
    dist = tf.reshape(dist, [-1,1])
    sq_dists = tf.add(tf.subtract(dist, tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data)))), tf.transpose(dist))
    my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists)))
    
    # Compute SVM Model
    first_term = tf.reduce_sum(b)
    b_vec_cross = tf.matmul(tf.transpose(b), b)
    y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
    second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)))
    loss = tf.negative(tf.subtract(first_term, second_term))
    
    # Create Prediction Kernel
    # Linear prediction kernel
    # my_kernel = tf.matmul(x_data, tf.transpose(prediction_grid))
    
    # Gaussian (RBF) prediction kernel
    rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])
    rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),[-1,1])
    pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB))
    pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist)))
    
    prediction_output = tf.matmul(tf.multiply(tf.transpose(y_target),b), pred_kernel)
    prediction = tf.sign(prediction_output-tf.reduce_mean(prediction_output))
    accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), tf.squeeze(y_target)), tf.float32))
    
    # Declare optimizer
    my_opt = tf.train.GradientDescentOptimizer(0.002)
    train_step = my_opt.minimize(loss)
    
    # Initialize variables
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # Training loop
    loss_vec = []
    batch_accuracy = []
    for i in range(1000):
        rand_index = np.random.choice(len(x_vals), size=batch_size)
        rand_x = x_vals[rand_index]
        rand_y = np.transpose([y_vals[rand_index]])
        sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})
        
        temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})
        loss_vec.append(temp_loss)
        
        acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
                                                 y_target: rand_y,
                                                 prediction_grid:rand_x})
        batch_accuracy.append(acc_temp)
        
        if (i+1)%250==0:
            print('Step #' + str(i+1))
            print('Loss = ' + str(temp_loss))
    
    # Create a mesh to plot points in
    x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
    y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                         np.arange(y_min, y_max, 0.02))
    grid_points = np.c_[xx.ravel(), yy.ravel()]
    [grid_predictions] = sess.run(prediction, feed_dict={x_data: rand_x,
                                                       y_target: rand_y,
                                                       prediction_grid: grid_points})
    grid_predictions = grid_predictions.reshape(xx.shape)
    
    # Plot points and grid
    plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8)
    plt.plot(class1_x, class1_y, 'ro', label='Class 1')
    plt.plot(class2_x, class2_y, 'kx', label='Class -1')
    plt.title('Gaussian SVM Results')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.legend(loc='lower right')
    plt.ylim([-1.5, 1.5])
    plt.xlim([-1.5, 1.5])
    plt.show()
    
    # Plot batch accuracy
    plt.plot(batch_accuracy, 'k-', label='Accuracy')
    plt.title('Batch Accuracy')
    plt.xlabel('Generation')
    plt.ylabel('Accuracy')
    plt.legend(loc='lower right')
    plt.show()
    
    # Plot loss over time
    plt.plot(loss_vec, 'k-')
    plt.title('Loss per Generation')
    plt.xlabel('Generation')
    plt.ylabel('Loss')
    plt.show()
    
    # Evaluate on new/unseen data points
    # New data points:
    new_points = np.array([(-0.75, -0.75),
                           (-0.5, -0.5),
                           (-0.25, -0.25),
                           (0.25, 0.25),
                           (0.5, 0.5),
                           (0.75, 0.75)])
    
    [evaluations] = sess.run(prediction, feed_dict={x_data: x_vals,
                                                    y_target: np.transpose([y_vals]),
                                                    prediction_grid: new_points})
    
    for ix, p in enumerate(new_points):
        print('{} : class={}'.format(p, evaluations[ix]))
    

     

  • 相关阅读:
    B00009 C语言分割字符串库函数strtok
    B00009 C语言分割字符串库函数strtok
    I00026 计算数根
    I00026 计算数根
    I00025 寻找循环数
    Magic Stones CodeForces
    Continued Fractions CodeForces
    AtCoder Beginner Contest 116 D
    Applese 的毒气炸弹 G 牛客寒假算法基础集训营4(图论+最小生成树)
    Choosing The Commander CodeForces
  • 原文地址:https://www.cnblogs.com/bonelee/p/8996567.html
Copyright © 2011-2022 走看看