zoukankan      html  css  js  c++  java
  • ES profile 性能优化用——返回各个shard的耗时

    Profile API

    都说要致富先修路,要调优当然需要先监控啦,elasticsearch在很多层面都提供了stats方便你来监控调优,但是还不够,其实很多情况下查询速度慢很大一部分原因是糟糕的查询引起的,玩过SQL的人都知道,数据库服务的执行计划(execution plan)非常有用,可以看到那些查询走没走索引和执行时间,用来调优,elasticsearch现在提供了Profile API来进行查询的优化,只需要在查询的时候开启profile:true就可以了,一个查询执行过程中的每个组件的性能消耗都能收集到。 
    这里写图片描述

    那个子查询耗时多少,占比多少,一目了然,同时支持search和aggregation的profile!

    Usage

    Any _search request can be profiled by adding a top-level profile parameter:

    GET /twitter/_search
    {
      "profile": true,
      "query" : {
        "match" : { "message" : "some number" }
      }
    }

    Setting the top-level profile parameter to true will enable profiling for the search

    This will yield the following result:

    {
       "took": 25,
       "timed_out": false,
       "_shards": {
          "total": 1,
          "successful": 1,
          "skipped" : 0,
          "failed": 0
       },
       "hits": {
          "total": 4,
          "max_score": 0.5093388,
          "hits": [...] 
       },
       "profile": {
         "shards": [
            {
               "id": "[2aE02wS1R8q_QFnYu6vDVQ][twitter][0]",
               "searches": [
                  {
                     "query": [
                        {
                           "type": "BooleanQuery",
                           "description": "message:some message:number",
                           "time_in_nanos": "1873811",
                           "breakdown": {
                              "score": 51306,
                              "score_count": 4,
                              "build_scorer": 2935582,
                              "build_scorer_count": 1,
                              "match": 0,
                              "match_count": 0,
                              "create_weight": 919297,
                              "create_weight_count": 1,
                              "next_doc": 53876,
                              "next_doc_count": 5,
                              "advance": 0,
                              "advance_count": 0
                           },
                           "children": [
                              {
                                 "type": "TermQuery",
                                 "description": "message:some",
                                 "time_in_nanos": "391943",
                                 "breakdown": {
                                    "score": 28776,
                                    "score_count": 4,
                                    "build_scorer": 784451,
                                    "build_scorer_count": 1,
                                    "match": 0,
                                    "match_count": 0,
                                    "create_weight": 1669564,
                                    "create_weight_count": 1,
                                    "next_doc": 10111,
                                    "next_doc_count": 5,
                                    "advance": 0,
                                    "advance_count": 0
                                 }
                              },
                              {
                                 "type": "TermQuery",
                                 "description": "message:number",
                                 "time_in_nanos": "210682",
                                 "breakdown": {
                                    "score": 4552,
                                    "score_count": 4,
                                    "build_scorer": 42602,
                                    "build_scorer_count": 1,
                                    "match": 0,
                                    "match_count": 0,
                                    "create_weight": 89323,
                                    "create_weight_count": 1,
                                    "next_doc": 2852,
                                    "next_doc_count": 5,
                                    "advance": 0,
                                    "advance_count": 0
                                 }
                              }
                           ]
                        }
                     ],
                     "rewrite_time": 51443,
                     "collector": [
                        {
                           "name": "CancellableCollector",
                           "reason": "search_cancelled",
                           "time_in_nanos": "304311",
                           "children": [
                             {
                               "name": "SimpleTopScoreDocCollector",
                               "reason": "search_top_hits",
                               "time_in_nanos": "32273"
                             }
                           ]
                        }
                     ]
                  }
               ],
               "aggregations": []
            }
         ]
       }
    }

    Search results are returned, but were omitted here for brevity

    Even for a simple query, the response is relatively complicated. Let’s break it down piece-by-piece before moving to more complex examples.

    First, the overall structure of the profile response is as follows:

    {
       "profile": {
            "shards": [
               {
                  "id": "[2aE02wS1R8q_QFnYu6vDVQ][twitter][0]",  
                  "searches": [
                     {
                        "query": [...],             
                        "rewrite_time": 51443,      
                        "collector": [...]          
                     }
                  ],
                  "aggregations": [...]             
               }
            ]
         }
    }

    A profile is returned for each shard that participated in the response, and is identified by a unique ID

    Each profile contains a section which holds details about the query execution

    Each profile has a single time representing the cumulative rewrite time

    Each profile also contains a section about the Lucene Collectors which run the search

    Each profile contains a section which holds the details about the aggregation execution

  • 相关阅读:
    C#预编译指令
    net 数据库连接详解 相当经典啊
    C#中参数前缀ref、out的使用
    C#中HTML字符转换函数
    SQL语句【TSQL汇总】
    64位XP操作系统下访问Access数据库的问题及解决
    ASP.NET Cache的一些总结
    xml 总结
    POJ 1011 Sticks
    POJ 3278 Catch That Cow
  • 原文地址:https://www.cnblogs.com/bonelee/p/9830676.html
Copyright © 2011-2022 走看看