zoukankan      html  css  js  c++  java
  • VAE demo

    先看tflearn 官方的:

    from __future__ import division, print_function, absolute_import
    
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.stats import norm
    import tensorflow as tf
    
    import tflearn
    
    # Data loading and preprocessing
    import tflearn.datasets.mnist as mnist
    X, Y, testX, testY = mnist.load_data(one_hot=True)
    
    # Params
    original_dim = 784 # MNIST images are 28x28 pixels
    hidden_dim = 256
    latent_dim = 2
    
    # Building the encoder
    encoder = tflearn.input_data(shape=[None, 784], name='input_images')
    encoder = tflearn.fully_connected(encoder, hidden_dim, activation='relu')
    z_mean = tflearn.fully_connected(encoder, latent_dim)
    z_std = tflearn.fully_connected(encoder, latent_dim)
    
    # Sampler: Normal (gaussian) random distribution
    eps = tf.random_normal(tf.shape(z_std), dtype=tf.float32, mean=0., stddev=1.0,
                           name='epsilon')
    z = z_mean + tf.exp(z_std / 2) * eps
    
    # Building the decoder (with scope to re-use these layers later)
    decoder = tflearn.fully_connected(z, hidden_dim, activation='relu',
                                      scope='decoder_h')
    decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid',
                                      scope='decoder_out')
    
    # Define VAE Loss
    def vae_loss(x_reconstructed, x_true):
        # Reconstruction loss
        encode_decode_loss = x_true * tf.log(1e-10 + x_reconstructed) 
                             + (1 - x_true) * tf.log(1e-10 + 1 - x_reconstructed)
        encode_decode_loss = -tf.reduce_sum(encode_decode_loss, 1)
        # KL Divergence loss
        kl_div_loss = 1 + z_std - tf.square(z_mean) - tf.exp(z_std)
        kl_div_loss = -0.5 * tf.reduce_sum(kl_div_loss, 1)
        return tf.reduce_mean(encode_decode_loss + kl_div_loss)
    
    net = tflearn.regression(decoder, optimizer='rmsprop', learning_rate=0.001,
                             loss=vae_loss, metric=None, name='target_images')
    
    # We will need 2 models, one for training that will learn the latent
    # representation, and one that can take random normal noise as input and
    # use the decoder part of the network to generate an image
    
    # Train the VAE
    training_model = tflearn.DNN(net, tensorboard_verbose=0)
    training_model.fit({'input_images': X}, {'target_images': X}, n_epoch=100,
                       validation_set=(testX, testX), batch_size=256, run_id="vae")
    
    # Build an image generator (re-using the decoding layers)
    # Input data is a normal (gaussian) random distribution (with dim = latent_dim)
    input_noise = tflearn.input_data(shape=[None, latent_dim], name='input_noise')
    decoder = tflearn.fully_connected(input_noise, hidden_dim, activation='relu',
                                      scope='decoder_h', reuse=True)
    decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid',
                                      scope='decoder_out', reuse=True)
    generator_model = tflearn.DNN(decoder, session=training_model.session)
    
    # Building a manifold of generated digits
    n = 25 # Figure row size
    figure = np.zeros((28 * n, 28 * n))
    # Random normal distributions to feed network with
    x_axis = norm.ppf(np.linspace(0., 1., n))
    y_axis = norm.ppf(np.linspace(0., 1., n))
    
    for i, x in enumerate(x_axis):
        for j, y in enumerate(y_axis):
            samples = np.array([[x, y]])
            x_reconstructed = generator_model.predict({'input_noise': samples})
            digit = np.array(x_reconstructed[0]).reshape(28, 28)
            figure[i * 28: (i + 1) * 28, j * 28: (j + 1) * 28] = digit
    
    plt.figure(figsize=(10, 10))
    plt.imshow(figure, cmap='Greys_r')
    plt.show()
    

    再看:https://github.com/kiyomaro927/tflearn-vae/blob/master/source/test/one_dimension/vae.py

    import tensorflow as tf
    import tflearn
    
    from dataset import Dataset, Datasets
    
    import pickle
    import sys
    
    
    # loading data
    try:
        h_and_w = pickle.load(open('h_and_w.pkl', 'rb'))
        trainX, trainY, testX, testY = h_and_w.load_data()
    except:
        print("No dataset was found.")
        sys.exit(1)
    
    # network parameters
    input_dim = 1 # height data input
    encoder_hidden_dim = 16
    decoder_hidden_dim = 16
    latent_dim = 2
    
    # paths
    TENSORBOARD_DIR='experiment/'
    CHECKPOINT_PATH='out_models/'
    
    # training parameters
    n_epoch = 200
    batch_size = 50
    
    
    # encoder
    def encode(input_x):
        encoder = tflearn.fully_connected(input_x, encoder_hidden_dim, activation='relu')
        mu_encoder = tflearn.fully_connected(encoder, latent_dim, activation='linear')
        logvar_encoder = tflearn.fully_connected(encoder, latent_dim, activation='linear')
        return mu_encoder, logvar_encoder
    
    # decoder
    def decode(z):
        decoder = tflearn.fully_connected(z, decoder_hidden_dim, activation='relu')
        x_hat = tflearn.fully_connected(decoder, input_dim, activation='linear')
        return x_hat
    
    # sampler
    def sample(mu, logvar):
        epsilon = tf.random_normal(tf.shape(logvar), dtype=tf.float32, name='epsilon')
        std_encoder = tf.exp(tf.mul(0.5, logvar))
        z = tf.add(mu, tf.mul(std_encoder, epsilon))
        return z
    
    # loss function(regularization)
    def calculate_regularization_loss(mu, logvar):
        kl_divergence = -0.5 * tf.reduce_sum(1 + logvar - tf.square(mu) - tf.exp(logvar), reduction_indices=1)
        return kl_divergence
    
    # loss function(reconstruction)
    def calculate_reconstruction_loss(x_hat, input_x):
        mse = tflearn.objectives.mean_square(x_hat, input_x)
        return mse
    
    # trainer
    def define_trainer(target, optimizer):
        trainop = tflearn.TrainOp(loss=target,
                                  optimizer=optimizer,
                                  batch_size=batch_size,
                                  metric=None,
                                  name='vae_trainer')
    
        trainer = tflearn.Trainer(train_ops=trainop,
                                  tensorboard_dir=TENSORBOARD_DIR,
                                  tensorboard_verbose=3,
                                  checkpoint_path=CHECKPOINT_PATH,
                                  max_checkpoints=1)
        return trainer
    
    
    # flow of VAE training
    def main():
        input_x = tflearn.input_data(shape=(None, input_dim), name='input_x')
        mu, logvar = encode(input_x)
        z = sample(mu, logvar)
        x_hat = decode(z)
    
        regularization_loss = calculate_regularization_loss(mu, logvar)
        reconstruction_loss = calculate_reconstruction_loss(x_hat, input_x)
        target = tf.reduce_mean(tf.add(regularization_loss, reconstruction_loss))
    
        optimizer = tflearn.optimizers.Adam()
        optimizer = optimizer.get_tensor()
    
        trainer = define_trainer(target, optimizer)
    
        trainer.fit(feed_dicts={input_x: trainX}, val_feed_dicts={input_x: testX},
                    n_epoch=n_epoch,
                    show_metric=False,
                    snapshot_epoch=True,
                    shuffle_all=True,
                    run_id='VAE')
    
        return 0
    
    if __name__ == '__main__':
    sys.exit(main())
    

     keras的:https://gist.github.com/philipperemy/b8a7b7be344e447e7ee6625fe2fdd765

    from __future__ import print_function
    
    import os
    
    import numpy as np
    from keras.layers import RepeatVector
    from keras.layers.core import Dropout
    from keras.layers.recurrent import LSTM
    from keras.models import Sequential
    from keras.models import load_model
    
    np.random.seed(123)
    
    
    def prepare_sequences(x_train, window_length, random_indices):
        full_sequence = x_train.flatten()
        windows = []
        outliers = []
        for window_start in range(0, len(full_sequence) - window_length + 1):
            window_end = window_start + window_length
            window_range = range(window_start, window_end)
            window = list(full_sequence[window_range])
            contain_outlier = len(set(window_range).intersection(set(random_indices))) > 0
            outliers.append(contain_outlier)
            windows.append(window)
        return np.expand_dims(np.array(windows), axis=2), outliers
    
    
    def get_signal(size, outliers_size=0.01):
        sig = np.expand_dims(np.random.normal(loc=0, scale=1, size=(size, 1)), axis=1)
        if outliers_size < 1:  # percentage.
            outliers_size = int(size * outliers_size)
        random_indices = np.random.choice(range(size), size=outliers_size, replace=False)
        sig[random_indices] = np.random.randint(6, 9, 1)[0]
        return sig, random_indices
    
    
    def tp_fn_fp_tn(total, expected, actual):
        tp = len(set(expected).intersection(set(actual)))
        fn = len(set(expected) - set(actual))
        fp = len(set(actual) - set(expected))
        tn = len((total - set(expected)).intersection(total - set(actual)))
        return tp, fn, fp, tn
    
    
    def main():
        window_length = 10
        select_only_last_state = False
        model_file = 'model.h5'
        hidden_dim = 16
    
        # no outliers.
        signal_train, _ = get_signal(100000, outliers_size=0)
        x_train, _ = prepare_sequences(signal_train, window_length, [])
    
        # 1 percent are outliers.
        signal_test, random_indices = get_signal(100000, outliers_size=0.01)
        x_test, contain_outliers = prepare_sequences(signal_test, window_length, random_indices)
        outlier_indices = np.where(contain_outliers)[0]
    
        if os.path.isfile(model_file):
            m = load_model(model_file)
        else:
            m = Sequential()
            if select_only_last_state:
                m.add(LSTM(hidden_dim, input_shape=(window_length, 1), return_sequences=False))
                m.add(RepeatVector(window_length))
            else:
                m.add(LSTM(hidden_dim, input_shape=(window_length, 1), return_sequences=True))
            m.add(Dropout(p=0.1))
            m.add(LSTM(1, return_sequences=True, activation='linear'))
            m.compile(loss='mse', optimizer='adam')
            m.fit(x_train, x_train, batch_size=64, nb_epoch=5, validation_data=(x_test, x_test))
            m.save(model_file)
    
        pred_x_test = m.predict(x_test)
        mae_of_predictions = np.squeeze(np.max(np.square(pred_x_test - x_test), axis=1))
        mae_threshold = np.mean(mae_of_predictions) + np.std(mae_of_predictions)  # can use a running mean instead.
        actual = np.where(mae_of_predictions > mae_threshold)[0]
    
        tp, fn, fp, tn = tp_fn_fp_tn(set(range(len(pred_x_test))), outlier_indices, actual)
        precision = float(tp) / (tp + fp)
        hit_rate = float(tp) / (tp + fn)
        accuracy = float(tp + tn) / (tp + tn + fp + fn)
    
        print('precision = {}, hit_rate = {}, accuracy = {}'.format(precision, hit_rate, accuracy))
    
    
    if __name__ == '__main__':
    main()
    

     再看看keras官方的:

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    from keras.layers import Lambda, Input, Dense
    from keras.models import Model
    from keras.datasets import mnist
    from keras.losses import mse, binary_crossentropy
    from keras.utils import plot_model
    from keras import backend as K
    
    import numpy as np
    import matplotlib.pyplot as plt
    import argparse
    import os
    
    
    # reparameterization trick
    # instead of sampling from Q(z|X), sample eps = N(0,I)
    # z = z_mean + sqrt(var)*eps
    def sampling(args):
        """Reparameterization trick by sampling fr an isotropic unit Gaussian.
        # Arguments:
            args (tensor): mean and log of variance of Q(z|X)
        # Returns:
            z (tensor): sampled latent vector
        """
    
        z_mean, z_log_var = args
        batch = K.shape(z_mean)[0]
        dim = K.int_shape(z_mean)[1]
        # by default, random_normal has mean=0 and std=1.0
        epsilon = K.random_normal(shape=(batch, dim))
        return z_mean + K.exp(0.5 * z_log_var) * epsilon
    
    
    def plot_results(models,
                     data,
                     batch_size=128,
                     model_name="vae_mnist"):
        """Plots labels and MNIST digits as function of 2-dim latent vector
        # Arguments:
            models (tuple): encoder and decoder models
            data (tuple): test data and label
            batch_size (int): prediction batch size
            model_name (string): which model is using this function
        """
    
        encoder, decoder = models
        x_test, y_test = data
        os.makedirs(model_name, exist_ok=True)
    
        filename = os.path.join(model_name, "vae_mean.png")
        # display a 2D plot of the digit classes in the latent space
        z_mean, _, _ = encoder.predict(x_test,
                                       batch_size=batch_size)
        plt.figure(figsize=(12, 10))
        plt.scatter(z_mean[:, 0], z_mean[:, 1], c=y_test)
        plt.colorbar()
        plt.xlabel("z[0]")
        plt.ylabel("z[1]")
        plt.savefig(filename)
        plt.show()
    
        filename = os.path.join(model_name, "digits_over_latent.png")
        # display a 30x30 2D manifold of digits
        n = 30
        digit_size = 28
        figure = np.zeros((digit_size * n, digit_size * n))
        # linearly spaced coordinates corresponding to the 2D plot
        # of digit classes in the latent space
        grid_x = np.linspace(-4, 4, n)
        grid_y = np.linspace(-4, 4, n)[::-1]
    
        for i, yi in enumerate(grid_y):
            for j, xi in enumerate(grid_x):
                z_sample = np.array([[xi, yi]])
                x_decoded = decoder.predict(z_sample)
                digit = x_decoded[0].reshape(digit_size, digit_size)
                figure[i * digit_size: (i + 1) * digit_size,
                       j * digit_size: (j + 1) * digit_size] = digit
    
        plt.figure(figsize=(10, 10))
        start_range = digit_size // 2
        end_range = n * digit_size + start_range + 1
        pixel_range = np.arange(start_range, end_range, digit_size)
        sample_range_x = np.round(grid_x, 1)
        sample_range_y = np.round(grid_y, 1)
        plt.xticks(pixel_range, sample_range_x)
        plt.yticks(pixel_range, sample_range_y)
        plt.xlabel("z[0]")
        plt.ylabel("z[1]")
        plt.imshow(figure, cmap='Greys_r')
        plt.savefig(filename)
        plt.show()
    
    
    # MNIST dataset
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    
    image_size = x_train.shape[1]
    original_dim = image_size * image_size
    x_train = np.reshape(x_train, [-1, original_dim])
    x_test = np.reshape(x_test, [-1, original_dim])
    x_train = x_train.astype('float32') / 255
    x_test = x_test.astype('float32') / 255
    
    # network parameters
    input_shape = (original_dim, )
    intermediate_dim = 512
    batch_size = 128
    latent_dim = 2
    epochs = 50
    
    # VAE model = encoder + decoder
    # build encoder model
    inputs = Input(shape=input_shape, name='encoder_input')
    x = Dense(intermediate_dim, activation='relu')(inputs)
    z_mean = Dense(latent_dim, name='z_mean')(x)
    z_log_var = Dense(latent_dim, name='z_log_var')(x)
    
    # use reparameterization trick to push the sampling out as input
    # note that "output_shape" isn't necessary with the TensorFlow backend
    z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
    
    # instantiate encoder model
    encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
    encoder.summary()
    plot_model(encoder, to_file='vae_mlp_encoder.png', show_shapes=True)
    
    # build decoder model
    latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
    x = Dense(intermediate_dim, activation='relu')(latent_inputs)
    outputs = Dense(original_dim, activation='sigmoid')(x)
    
    # instantiate decoder model
    decoder = Model(latent_inputs, outputs, name='decoder')
    decoder.summary()
    plot_model(decoder, to_file='vae_mlp_decoder.png', show_shapes=True)
    
    # instantiate VAE model
    outputs = decoder(encoder(inputs)[2])
    vae = Model(inputs, outputs, name='vae_mlp')
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        help_ = "Load h5 model trained weights"
        parser.add_argument("-w", "--weights", help=help_)
        help_ = "Use mse loss instead of binary cross entropy (default)"
        parser.add_argument("-m",
                            "--mse",
                            help=help_, action='store_true')
        args = parser.parse_args()
        models = (encoder, decoder)
        data = (x_test, y_test)
    
        # VAE loss = mse_loss or xent_loss + kl_loss
        if args.mse:
            reconstruction_loss = mse(inputs, outputs)
        else:
            reconstruction_loss = binary_crossentropy(inputs,
                                                      outputs)
    
        reconstruction_loss *= original_dim
        kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
        kl_loss = K.sum(kl_loss, axis=-1)
        kl_loss *= -0.5
        vae_loss = K.mean(reconstruction_loss + kl_loss)
        vae.add_loss(vae_loss)
        vae.compile(optimizer='adam')
        vae.summary()
        plot_model(vae,
                   to_file='vae_mlp.png',
                   show_shapes=True)
    
        if args.weights:
            vae.load_weights(args.weights)
        else:
            # train the autoencoder
            vae.fit(x_train,
                    epochs=epochs,
                    batch_size=batch_size,
                    validation_data=(x_test, None))
            vae.save_weights('vae_mlp_mnist.h5')
    
        plot_results(models,
                     data,
                     batch_size=batch_size,
    model_name="vae_mlp")
    

    上面介绍了VAE的原理,看起来很复杂,其实最终VAE也实现了跟AutoEncoder类似的作用,输入一个序列,得到一个隐变量(从隐变量的分布中采样得到),然后将隐变量重构成原始输入。不同的是,VAE学习到的是隐变量的分布(允许隐变量存在一定的噪声和随机性),因此可以具有类似正则化防止过拟合的作用。

    以下的构建一个VAE模型的keras代码,修改自keras的example代码,具体参数参考了Dount论文:

    def sampling(args):
        """Reparameterization trick by sampling fr an isotropic unit Gaussian.
        # Arguments:
            args (tensor): mean and log of variance of Q(z|X)
        # Returns:
            z (tensor): sampled latent vector
        """
        z_mean, z_log_var = args
        batch = K.shape(z_mean)[0]
        dim = K.int_shape(z_mean)[1]
        # by default, random_normal has mean=0 and std=1.0
        epsilon = K.random_normal(shape=(batch, dim))
        std_epsilon = 1e-4
        return z_mean + (z_log_var + std_epsilon) * epsilon
    
    input_shape = (seq_len,)
    intermediate_dim = 100
    latent_dim = latent_dim
    
    # VAE model = encoder + decoder
    # build encoder model
    inputs = Input(shape=input_shape, name='encoder_input')
    x = Dense(intermediate_dim, activation='relu', kernel_regularizer=regularizers.l2(0.001))(inputs)
    x = Dense(intermediate_dim, activation='relu', kernel_regularizer=regularizers.l2(0.001))(x)
    z_mean = Dense(latent_dim, name='z_mean')(x)
    z_log_var = Dense(latent_dim, name='z_log_var', activation='softplus')(x)
    
    # use reparameterization trick to push the sampling out as input
    # note that "output_shape" isn't necessary with the TensorFlow backend
    z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
    
    # build decoder model
    x = Dense(intermediate_dim, activation='relu', kernel_regularizer=regularizers.l2(0.001))(z)
    x = Dense(intermediate_dim, activation='relu', kernel_regularizer=regularizers.l2(0.001))(x)
    x_mean = Dense(seq_len, name='x_mean')(x)
    x_log_var = Dense(seq_len, name='x_log_var', activation='softplus')(x)
    outputs = Lambda(sampling, output_shape=(seq_len,), name='x')([x_mean, x_log_var])
    
    vae = Model(inputs, outputs, name='vae_mlp')
    
    # add loss
    reconstruction_loss = mean_squared_error(inputs, outputs)
    reconstruction_loss *= seq_len
    kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
    kl_loss = K.sum(kl_loss, axis=-1)
    kl_loss *= -0.5
    vae_loss = K.mean(reconstruction_loss + kl_loss)
    vae.add_loss(vae_loss)
    
    vae.compile(optimizer='adam')
    

    基于VAE的周期性KPI异常检测方法其实跟AutoEncoder基本一致,可以使用重构误差来判断异常,来下面是结果,上图是原始输入,下图是重构结果,我们能够看到VAE重构的结果比AutoEncoder的更好一些。

  • 相关阅读:
    汉诺塔
    破损的键盘
    解方程
    运输计划
    选学霸
    子集和的目标值
    棋盘染色2
    守卫者的挑战
    飞扬的小鸟
    攻克城堡
  • 原文地址:https://www.cnblogs.com/bonelee/p/9851104.html
Copyright © 2011-2022 走看看