zoukankan      html  css  js  c++  java
  • 设x,y是概率空间(Ω,F,P)上的拟可积随机变量,证明:X=Y a.e 当且仅当 xdp = ydp 对每个A∈F成立。Q: X=Y almost surely iff ∀A∈G∫AXdP=∫AYdP

    E{XE{Y|C}}=E{YE{X|C}}

    现在有没有适合大学生用的搜题软件呢?  https://www.zhihu.com/question/51935291/answer/514312093  Approach0 (https://approach0.xyz/search/) 专门用来搜索 Math StackExchange (支持数学公式)。

    the if direction:

    https://math.stackexchange.com/questions/2494959/x-y-almost-surely-iff-forall-a-in-mathcalg-int-axdp-int-aydp?r=SearchResults&s=4|45.8271 

    zhihu search:    math stack exchange

           math exchange

    2,slader: 这个软件是帮助你写作业的,一般的教科书后面会有答案,但不会有详解,这个软件会帮助你更好的学习。

    手机上当然首推Desmos,Wolfram Alpha还有Brilliant啦!

    Math Lab。能解微分方程能画心型图神器

    设x,y是概率空间(Ω,F,P)上的拟可积随机变量,证明:X=Y a.e 当且仅当 xdp = ydp 对每个A∈F成立

    Let (Ω,F,P)(Ω,F,P) be a probability space with GFG⊂F. Let X,YX,Y be GG-measurable, and integrable. Then, how does one prove that

    X=YX=Y almost surely iff AGAXdP=AYdP∀A∈G∫AXdP=∫AYdP?

    Here's my try: AXdP=AYdPAXYdP=A(XY)1[XY]+(YX)1[X<Y]dP=0∫AXdP=∫AYdP⇔∫AX−YdP=∫A(X−Y)1[X≥Y]+(Y−X)1[X<Y]dP=0

    For A=[YX]A=[Y≥X], we get [XY]XYdP=0∫[X≥Y]X−YdP=0 which implies, by nonnegativity of XYX−Y on A, P(X=Y)=P(XY)P(X=Y)=P(X≥Y) or P(XY)=0P(X≥Y)=0

    For A=[Y<X]A=[Y<X], we get [X<Y]YXdP=0∫[X<Y]Y−XdP=0 which implies, by nonnegativity of XYX−Y on A, P(X=Y)=P(X<Y)P(X=Y)=P(X<Y) or P(X<Y)=0P(X<Y)=0

    So, we get

    (P(XY)=0  P(X=Y)=P(X<Y))  (P(X<Y)=0  P(X=Y)=P(XY))(P(X≥Y)=0 ∧ P(X=Y)=P(X<Y)) ∨ (P(X<Y)=0 ∧ P(X=Y)=P(X≥Y))

    which gives P(X=Y)=1P(X=Y)=1.

    I can choose A as above since the sum of measurable functions is also measurable [X>Y]=[XY>0][X>Y]=[X−Y>0]

    Is this a proper proof?

    Who is BB, and what is meant by "Let X,YX,Y be random variables in GG?" That XX and YY are σ(G)σ(G)-measurable? – Math1000 Oct 30 '17 at 10:41

    现在有没有适合大学生用的搜题软件呢?

     
  • 相关阅读:
    Django~1
    Python 正则表达式入门(初级篇)
    pytho占位符
    django之基于cookie和装饰器实现用户认证
    form error
    Python之路【第十七篇】:Django【进阶篇 】
    djangoform详解
    django自定义form验证error
    Django CRM客户关系管理系统
    ulimit
  • 原文地址:https://www.cnblogs.com/books2read/p/12297115.html
Copyright © 2011-2022 走看看