zoukankan      html  css  js  c++  java
  • Hadoop集群搭建

    原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/cluster_setup.html

    目的

    本文描述了如何安装、配置和管理有实际意义的Hadoop集群,其规模可从几个节点的小集群到几千个节点的超大集群。

    如果你希望在单机上安装Hadoop玩玩,从这里能找到相关细节。

    先决条件

    1. 确保在你集群中的每个节点上都安装了所有必需软件。
    2. 获取Hadoop软件包。

    安装

    安装Hadoop集群通常要将安装软件解压到集群内的所有机器上。

    通常,集群里的一台机器被指定为 NameNode,另一台不同的机器被指定为JobTracker。这些机器是masters。余下的机器即作为DataNode作为TaskTracker。这些机器是slaves

    我们用HADOOP_HOME指代安装的根路径。通常,集群里的所有机器的HADOOP_HOME路径相同。

    配置

    接下来的几节描述了如何配置Hadoop集群。

    配置文件

    对Hadoop的配置通过conf/目录下的两个重要配置文件完成:

    1. hadoop-default.xml - 只读的默认配置。
    2. hadoop-site.xml - 集群特有的配置。

    要了解更多关于这些配置文件如何影响Hadoop框架的细节,请看这里

    此外,通过设置conf/hadoop-env.sh中的变量为集群特有的值,你可以对bin/目录下的Hadoop脚本进行控制。

    集群配置

    要配置Hadoop集群,你需要设置Hadoop守护进程的运行环境和Hadoop守护进程的运行参数

    Hadoop守护进程指NameNode/DataNode 和JobTracker/TaskTracker。

    配置Hadoop守护进程的运行环境

    管理员可在conf/hadoop-env.sh脚本内对Hadoop守护进程的运行环境做特别指定。

    至少,你得设定JAVA_HOME使之在每一远端节点上都被正确设置。

    管理员可以通过配置选项HADOOP_*_OPTS来分别配置各个守护进程。 下表是可以配置的选项。

    守护进程配置选项
    NameNode HADOOP_NAMENODE_OPTS
    DataNode HADOOP_DATANODE_OPTS
    SecondaryNamenode HADOOP_SECONDARYNAMENODE_OPTS
    JobTracker HADOOP_JOBTRACKER_OPTS
    TaskTracker HADOOP_TASKTRACKER_OPTS

    例如,配置Namenode时,为了使其能够并行回收垃圾(parallelGC), 要把下面的代码加入到hadoop-env.sh :
    export HADOOP_NAMENODE_OPTS="-XX:+UseParallelGC ${HADOOP_NAMENODE_OPTS}"

    其它可定制的常用参数还包括:

    • HADOOP_LOG_DIR - 守护进程日志文件的存放目录。如果不存在会被自动创建。
    • HADOOP_HEAPSIZE - 最大可用的堆大小,单位为MB。比如,1000MB。 这个参数用于设置hadoop守护进程的堆大小。缺省大小是1000MB。

    配置Hadoop守护进程的运行参数

    这部分涉及Hadoop集群的重要参数,这些参数在conf/hadoop-site.xml中指定。

    参数取值备注
    fs.default.name NameNode的URI。 hdfs://主机名/
    mapred.job.tracker JobTracker的主机(或者IP)和端口。 主机:端口
    dfs.name.dir NameNode持久存储名字空间及事务日志的本地文件系统路径。 当这个值是一个逗号分割的目录列表时,nametable数据将会被复制到所有目录中做冗余备份。
    dfs.data.dir DataNode存放块数据的本地文件系统路径,逗号分割的列表。 当这个值是逗号分割的目录列表时,数据将被存储在所有目录下,通常分布在不同设备上。
    mapred.system.dir Map/Reduce框架存储系统文件的HDFS路径。比如/hadoop/mapred/system/。 这个路径是默认文件系统(HDFS)下的路径, 须从服务器和客户端上均可访问。
    mapred.local.dir 本地文件系统下逗号分割的路径列表,Map/Reduce临时数据存放的地方。 多路径有助于利用磁盘i/o。
    mapred.tasktracker.{map|reduce}.tasks.maximum 某一TaskTracker上可运行的最大Map/Reduce任务数,这些任务将同时各自运行。 默认为2(2个map和2个reduce),可依据硬件情况更改。
    dfs.hosts/dfs.hosts.exclude 许可/拒绝DataNode列表。 如有必要,用这个文件控制许可的datanode列表。
    mapred.hosts/mapred.hosts.exclude 许可/拒绝TaskTracker列表。 如有必要,用这个文件控制许可的TaskTracker列表。

    通常,上述参数被标记为 final 以确保它们不被用户应用更改。

    现实世界的集群配置

    这节罗列在大规模集群上运行sort基准测试(benchmark)时使用到的一些非缺省配置。

    • 运行sort900的一些非缺省配置值,sort900即在900个节点的集群上对9TB的数据进行排序:

      参数取值备注
      dfs.block.size 134217728 针对大文件系统,HDFS的块大小取128MB。
      dfs.namenode.handler.count 40 启动更多的NameNode服务线程去处理来自大量DataNode的RPC请求。
      mapred.reduce.parallel.copies 20 reduce启动更多的并行拷贝器以获取大量map的输出。
      mapred.child.java.opts -Xmx512M 为map/reduce子虚拟机使用更大的堆。
      fs.inmemory.size.mb 200 为reduce阶段合并map输出所需的内存文件系统分配更多的内存。
      io.sort.factor 100 文件排序时更多的流将同时被归并。
      io.sort.mb 200 提高排序时的内存上限。
      io.file.buffer.size 131072 SequenceFile中用到的读/写缓存大小。
    • 运行sort1400和sort2000时需要更新的配置,即在1400个节点上对14TB的数据进行排序和在2000个节点上对20TB的数据进行排序:

      参数取值备注
      mapred.job.tracker.handler.count 60 启用更多的JobTracker服务线程去处理来自大量TaskTracker的RPC请求。
      mapred.reduce.parallel.copies 50  
      tasktracker.http.threads 50 为TaskTracker的Http服务启用更多的工作线程。reduce通过Http服务获取map的中间输出。
      mapred.child.java.opts -Xmx1024M 使用更大的堆用于maps/reduces的子虚拟机

    Slaves

    通常,你选择集群中的一台机器作为NameNode,另外一台不同的机器作为JobTracker。余下的机器即作为DataNode又作为TaskTracker,这些被称之为slaves

    conf/slaves文件中列出所有slave的主机名或者IP地址,一行一个。

    日志

    Hadoop使用Apache log4j来记录日志,它由Apache Commons Logging框架来实现。编辑conf/log4j.properties文件可以改变Hadoop守护进程的日志配置(日志格式等)。

    历史日志

    作业的历史文件集中存放在hadoop.job.history.location,这个也可以是在分布式文件系统下的路径,其默认值为${HADOOP_LOG_DIR}/history。jobtracker的web UI上有历史日志的web UI链接。

    历史文件在用户指定的目录hadoop.job.history.user.location也会记录一份,这个配置的缺省值为作业的输出目录。这些文件被存放在指定路径下的“_logs/history/”目录中。因此,默认情况下日志文件会在“mapred.output.dir/_logs/history/”下。如果将hadoop.job.history.user.location指定为值none,系统将不再记录此日志。

    用户可使用以下命令在指定路径下查看历史日志汇总
    $ bin/hadoop job -history output-dir
    这条命令会显示作业的细节信息,失败和终止的任务细节。
    关于作业的更多细节,比如成功的任务,以及对每个任务的所做的尝试次数等可以用下面的命令查看
    $ bin/hadoop job -history all output-dir

    一但全部必要的配置完成,将这些文件分发到所有机器的HADOOP_CONF_DIR路径下,通常是${HADOOP_HOME}/conf。

    Hadoop的机架感知

    HDFS和Map/Reduce的组件是能够感知机架的。

    NameNode和JobTracker通过调用管理员配置模块中的APIresolve来获取集群里每个slave的机架id。该API将slave的DNS名称(或者IP地址)转换成机架id。使用哪个模块是通过配置项topology.node.switch.mapping.impl来指定的。模块的默认实现会调用topology.script.file.name配置项指定的一个的脚本/命令。 如果topology.script.file.name未被设置,对于所有传入的IP地址,模块会返回/default-rack作为机架id。在Map/Reduce部分还有一个额外的配置项mapred.cache.task.levels,该参数决定cache的级数(在网络拓扑中)。例如,如果默认值是2,会建立两级的cache- 一级针对主机(主机 -> 任务的映射)另一级针对机架(机架 -> 任务的映射)。

    启动Hadoop

    启动Hadoop集群需要启动HDFS集群和Map/Reduce集群。

    格式化一个新的分布式文件系统:
    $ bin/hadoop namenode -format

    在分配的NameNode上,运行下面的命令启动HDFS:
    $ bin/start-dfs.sh

    bin/start-dfs.sh脚本会参照NameNode上${HADOOP_CONF_DIR}/slaves文件的内容,在所有列出的slave上启动DataNode守护进程。

    在分配的JobTracker上,运行下面的命令启动Map/Reduce:
    $ bin/start-mapred.sh

    bin/start-mapred.sh脚本会参照JobTracker上${HADOOP_CONF_DIR}/slaves文件的内容,在所有列出的slave上启动TaskTracker守护进程。

    停止Hadoop

    在分配的NameNode上,执行下面的命令停止HDFS:
    $ bin/stop-dfs.sh

    bin/stop-dfs.sh脚本会参照NameNode上${HADOOP_CONF_DIR}/slaves文件的内容,在所有列出的slave上停止DataNode守护进程。

    在分配的JobTracker上,运行下面的命令停止Map/Reduce:
    $ bin/stop-mapred.sh

    bin/stop-mapred.sh脚本会参照JobTracker上${HADOOP_CONF_DIR}/slaves文件的内容,在所有列出的slave上停止TaskTracker守护进程。

  • 相关阅读:
    大话计算机网络一 聊聊UDP
    Go调度器系列(2)宏观看调度器
    Go语言高阶:调度器系列(1)起源
    gin+go-micro+etcd实战一
    记录一次云主机部署openstack的血泪史
    paste deploy 学习笔记
    Openstack计算Nova组件
    jumpserver docker简单搭建
    [原创][开源] SunnyUI.Net 帮助文档目录
    [原创][开源]SunnyUI.Net, C# .Net WinForm开源控件库、工具类库、扩展类库、多页面开发框架
  • 原文地址:https://www.cnblogs.com/boonya/p/8858913.html
Copyright © 2011-2022 走看看