zoukankan      html  css  js  c++  java
  • Meissel Lehmer Algorithm

    //Meisell-Lehmer
    //G++ 218ms 43252k
    #include<cstdio>
    #include<cmath>
    using namespace std;
    #define LL long long
    const int N = 5e6 + 2;
    bool np[N];
    int prime[N], pi[N];
    int getprime()
    {
        int cnt = 0;
        np[0] = np[1] = true;
        pi[0] = pi[1] = 0;
        for(int i = 2; i < N; ++i)
        {
            if(!np[i]) prime[++cnt] = i;
            pi[i] = cnt;
            for(int j = 1; j <= cnt && i * prime[j] < N; ++j)
            {
                np[i * prime[j]] = true;
                if(i % prime[j] == 0)   break;
            }
        }
        return cnt;
    }
    const int M = 7;
    const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17;
    int phi[PM + 1][M + 1], sz[M + 1];
    void init()
    {
        getprime();
        sz[0] = 1;
        for(int i = 0; i <= PM; ++i)  phi[i][0] = i;
        for(int i = 1; i <= M; ++i)
        {
            sz[i] = prime[i] * sz[i - 1];
            for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1];
        }
    }
    int sqrt2(LL x)
    {
        LL r = (LL)sqrt(x - 0.1);
        while(r * r <= x)   ++r;
        return int(r - 1);
    }
    int sqrt3(LL x)
    {
        LL r = (LL)cbrt(x - 0.1);
        while(r * r * r <= x)   ++r;
        return int(r - 1);
    }
    LL getphi(LL x, int s)
    {
        if(s == 0)  return x;
        if(s <= M)  return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s];
        if(x <= prime[s]*prime[s])   return pi[x] - s + 1;
        if(x <= prime[s]*prime[s]*prime[s] && x < N)
        {
            int s2x = pi[sqrt2(x)];
            LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2;
            for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]];
            return ans;
        }
        return getphi(x, s - 1) - getphi(x / prime[s], s - 1);
    }
    LL getpi(LL x)
    {
        if(x < N)   return pi[x];
        LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1;
        for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1;
        return ans;
    }
    LL lehmer_pi(LL x)
    {
        if(x < N)   return pi[x];
        int a = (int)lehmer_pi(sqrt2(sqrt2(x)));
        int b = (int)lehmer_pi(sqrt2(x));
        int c = (int)lehmer_pi(sqrt3(x));
        LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2;
        for (int i = a + 1; i <= b; i++)
        {
            LL w = x / prime[i];
            sum -= lehmer_pi(w);
            if (i > c) continue;
            LL lim = lehmer_pi(sqrt2(w));
            for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1);
        }
        return sum;
    }
    int main()
    {
        init();
        LL n;
        while(~scanf("%lld",&n))
        {
            printf("%lld
    ",lehmer_pi(n));
        }
        return 0;
    }
    

      

    #include <bits/stdc++.h>
    #define ll long long
    using namespace std;
    ll f[340000],g[340000],n;
    void init(){
        ll i,j,m;
        for(m=1;m*m<=n;++m)f[m]=n/m-1;
        for(i=1;i<=m;++i)g[i]=i-1;
        for(i=2;i<=m;++i){
            if(g[i]==g[i-1])continue;
            for(j=1;j<=min(m-1,n/i/i);++j){
                if(i*j<m)f[j]-=f[i*j]-g[i-1];
                else f[j]-=g[n/i/j]-g[i-1];
            }
            for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1];
        }
    }
    int main(){
        while(scanf("%I64d",&n)!=EOF){
            init();
            cout<<f[1]<<endl;
        }
        return 0;
    }
    

      

    容斥原理

    从上面的代码可以发现,显然这种筛法只能应付达到1e7这种数量级的运算,即使是线性的筛选法,也无法满足,因为在ACM竞赛中,1e8的内存是极有可能获得Memery Limit Exceed的。

    于是可以考虑容斥原理。

    以AHUOJ 557为例,1e8的情况是筛选法完全无法满足的,但是还是考虑a * b = c的情况,1e8只需要考虑10000以内的素数p[10000],然后每次先减去n / p[i],再加上n / (p[i] * p[j])再减去n / (p[i] * p[j] * p[k])以此类推...于是就可以得到正确结果了。

    代码如下:

    #include <cmath>
    #include <cstdio>
    using namespace std;
     
    const int maxn = 10005;
    int sqrn, n, ans = 0;
    bool vis[maxn];
    int pri[1500] = {0};
    void init(){
        vis[1] = true;
        int k = 0;
        for(int i = 2; i < maxn; i++){
            if(!vis[i]) pri[k++] = i;
            for(int j = 0; j < k && pri[j] * i < maxn; j++){
                vis[pri[j] * i] = true;
                if(i % pri[j] == 0) break;
            }
        }
    }
    void dfs(int num, int res, int index){
        for(int i = index; pri[i] <= sqrn; i++){
            if(1LL * res * pri[i] > n){
                return;
            }
            dfs(num + 1, res * pri[i], i+1);
            if(num % 2 == 1){
                ans -= n / (res * pri[i]);
            }else{
                ans += n / (res * pri[i]);
            }
     
            if(num == 1) ans++;
        }
    }
    int main(){
        init();
        while(~scanf("%d",&n) && n){
            ans = n;
            sqrn = sqrt((double)n);
            dfs(1,1,0);
            printf("%d
    ",ans-1);
        }
        return 0;
    }
    

      公式应用参见:http://www.cnblogs.com/yefeng1627/archive/2013/03/29/2988694.html

    证明看论文。虽然论文的部分公式还是比较难看懂的QAQ~

  • 相关阅读:
    LAMP环境搭建博客
    PHP项目中经常用到的无限极分类函数
    在PHP项目中,每个类都要有对应的命名空间,为什么?
    一键解决docker pull hello-world的问题
    网盘10M速度下载-亿寻下载器
    《提问的智慧》
    idea出现 Error:(1, 1) java: 非法字符: 'ufeff'解决方式
    多线程的四种实现方式
    Java中的get()方法和set()方法
    Java构造器(构造方法/constructor)
  • 原文地址:https://www.cnblogs.com/boson-is-god/p/6221937.html
Copyright © 2011-2022 走看看