//Meisell-Lehmer //G++ 218ms 43252k #include<cstdio> #include<cmath> using namespace std; #define LL long long const int N = 5e6 + 2; bool np[N]; int prime[N], pi[N]; int getprime() { int cnt = 0; np[0] = np[1] = true; pi[0] = pi[1] = 0; for(int i = 2; i < N; ++i) { if(!np[i]) prime[++cnt] = i; pi[i] = cnt; for(int j = 1; j <= cnt && i * prime[j] < N; ++j) { np[i * prime[j]] = true; if(i % prime[j] == 0) break; } } return cnt; } const int M = 7; const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17; int phi[PM + 1][M + 1], sz[M + 1]; void init() { getprime(); sz[0] = 1; for(int i = 0; i <= PM; ++i) phi[i][0] = i; for(int i = 1; i <= M; ++i) { sz[i] = prime[i] * sz[i - 1]; for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1]; } } int sqrt2(LL x) { LL r = (LL)sqrt(x - 0.1); while(r * r <= x) ++r; return int(r - 1); } int sqrt3(LL x) { LL r = (LL)cbrt(x - 0.1); while(r * r * r <= x) ++r; return int(r - 1); } LL getphi(LL x, int s) { if(s == 0) return x; if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s]; if(x <= prime[s]*prime[s]) return pi[x] - s + 1; if(x <= prime[s]*prime[s]*prime[s] && x < N) { int s2x = pi[sqrt2(x)]; LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2; for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]]; return ans; } return getphi(x, s - 1) - getphi(x / prime[s], s - 1); } LL getpi(LL x) { if(x < N) return pi[x]; LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1; for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1; return ans; } LL lehmer_pi(LL x) { if(x < N) return pi[x]; int a = (int)lehmer_pi(sqrt2(sqrt2(x))); int b = (int)lehmer_pi(sqrt2(x)); int c = (int)lehmer_pi(sqrt3(x)); LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2; for (int i = a + 1; i <= b; i++) { LL w = x / prime[i]; sum -= lehmer_pi(w); if (i > c) continue; LL lim = lehmer_pi(sqrt2(w)); for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1); } return sum; } int main() { init(); LL n; while(~scanf("%lld",&n)) { printf("%lld ",lehmer_pi(n)); } return 0; }
#include <bits/stdc++.h> #define ll long long using namespace std; ll f[340000],g[340000],n; void init(){ ll i,j,m; for(m=1;m*m<=n;++m)f[m]=n/m-1; for(i=1;i<=m;++i)g[i]=i-1; for(i=2;i<=m;++i){ if(g[i]==g[i-1])continue; for(j=1;j<=min(m-1,n/i/i);++j){ if(i*j<m)f[j]-=f[i*j]-g[i-1]; else f[j]-=g[n/i/j]-g[i-1]; } for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1]; } } int main(){ while(scanf("%I64d",&n)!=EOF){ init(); cout<<f[1]<<endl; } return 0; }
容斥原理
从上面的代码可以发现,显然这种筛法只能应付达到1e7这种数量级的运算,即使是线性的筛选法,也无法满足,因为在ACM竞赛中,1e8的内存是极有可能获得Memery Limit Exceed的。
于是可以考虑容斥原理。
以AHUOJ 557为例,1e8的情况是筛选法完全无法满足的,但是还是考虑a * b = c的情况,1e8只需要考虑10000以内的素数p[10000],然后每次先减去n / p[i],再加上n / (p[i] * p[j])再减去n / (p[i] * p[j] * p[k])以此类推...于是就可以得到正确结果了。
代码如下:
#include <cmath> #include <cstdio> using namespace std; const int maxn = 10005; int sqrn, n, ans = 0; bool vis[maxn]; int pri[1500] = {0}; void init(){ vis[1] = true; int k = 0; for(int i = 2; i < maxn; i++){ if(!vis[i]) pri[k++] = i; for(int j = 0; j < k && pri[j] * i < maxn; j++){ vis[pri[j] * i] = true; if(i % pri[j] == 0) break; } } } void dfs(int num, int res, int index){ for(int i = index; pri[i] <= sqrn; i++){ if(1LL * res * pri[i] > n){ return; } dfs(num + 1, res * pri[i], i+1); if(num % 2 == 1){ ans -= n / (res * pri[i]); }else{ ans += n / (res * pri[i]); } if(num == 1) ans++; } } int main(){ init(); while(~scanf("%d",&n) && n){ ans = n; sqrn = sqrt((double)n); dfs(1,1,0); printf("%d ",ans-1); } return 0; }
公式应用参见:http://www.cnblogs.com/yefeng1627/archive/2013/03/29/2988694.html
证明看论文。虽然论文的部分公式还是比较难看懂的QAQ~