zoukankan      html  css  js  c++  java
  • 读书笔记《集体智慧编程》Chapter 9 : Advanced Classification: Kernel Methods and SVMs

    本章概要

    本章介绍了线性分类器和支持向量机(Supprt Vector Machine, short for SVM)。同时,还介绍了一些数据预处理的相关实践。SVM的原理比较高深,本章没有详细的说明,只是介绍了如何采用python中的LIBSVM库,进行SVM的训练和预测。线性分类器虽然简单,但是与SVM还是有一定联系,所以本章最开始介绍了线性分类器。

    决策树的不足

    本章给出的例子是交友网站上的配对预测,经过数据预处理后,主要是一些数值数据。使用决策树分类,会发现节点基本上是在同一类数据上不同值之间来回变化,比如年龄(如下图)。所以,决策数并不适合数值关系负责,没有明确分割点的数据分类。

    image

    数据伸缩

    对于一个向量v=(x1, x2);如果x1的作用域为[1 ~ 100],而x2的作用域为[0~1],那么比较两个同类向量时,x1的贡献比x2大。但是这是我们不希望看到的,所以可以对x1进行伸缩变换,将其等价的映射到【0~1】中的某个值。

    线性分类 & Kernel Method & SVM

    上面这几个概念,书上均是通过一些例子讲解,虽然可以看懂,但是感觉还是没有讲到原理。这个可以后续深入研究,目前先有个映像。SVM可以用来分类,而且效果比线性分类好,可以适应复杂数值数据的场景。

    声明:如有转载本博文章,请注明出处。您的支持是我的动力!文章部分内容来自互联网,本人不负任何法律责任。
  • 相关阅读:
    javaEE项目部署方式
    Docker安装mysql5.6
    自定义镜像mycentos
    DockerFile体系结构(保留字指令)
    Cognition math based on Factor Space (2016.05)
    MATLAB画ROC曲线,及计算AUC值
    MATLAB时间序列预测Prediction of time series with NAR neural network
    因素空间发展评述
    ps 证件照(1,2寸)
    kali linux wmtools安装
  • 原文地址:https://www.cnblogs.com/bourneli/p/2783201.html
Copyright © 2011-2022 走看看