zoukankan      html  css  js  c++  java
  • 机器学习系列-tensorflow-03-线性回归Linear Regression

    利用tensorflow实现数据的线性回归

    **导入相关库**
    import tensorflow as tf
    import numpy
    import matplotlib.pyplot as plt
    rng = numpy.random
    

    参数设置

    learning_rate = 0.01
    training_epochs = 1000
    display_step = 50
    

    训练数据

    train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
                         7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
                         2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    n_samples = train_X.shape[0]
    

    tf图输入

    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    

    设置权重和偏置

    W = tf.Variable(rng.randn(), name="weight")
    b = tf.Variable(rng.randn(), name="bias")
    

    构建线性模型

    pred = tf.add(tf.multiply(X, W), b)
    

    均方误差

    cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
    

    梯度下降

    optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    

    初始化变量

    init = tf.global_variables_initializer()
    

    开始训练

    with tf.Session() as sess:
        sess.run(init)
        # 适合所有训练数据
        for epoch in range(training_epochs):
            for (x, y) in zip(train_X, train_Y):
                sess.run(optimizer, feed_dict={X: x, Y: y})
            # 显示每个纪元步骤的日志
            if (epoch+1) % display_step == 0:
                c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
                print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), 
                    "W=", sess.run(W), "b=", sess.run(b))
        print("Optimization Finished!") 
        training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
        print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '
    ')
        # 画图显示
        plt.plot(train_X, train_Y, 'ro', label='Original data')
        plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
        plt.legend()
        plt.show()
    

    结果展示

    Epoch: 0050 cost= 0.183995649 W= 0.43250677 b= -0.5143978
    Epoch: 0100 cost= 0.171630666 W= 0.42162812 b= -0.43613702
    Epoch: 0150 cost= 0.160693780 W= 0.41139638 b= -0.36253116
    Epoch: 0200 cost= 0.151019916 W= 0.40177315 b= -0.2933027
    Epoch: 0250 cost= 0.142463341 W= 0.39272234 b= -0.22819161
    Epoch: 0300 cost= 0.134895071 W= 0.3842099 b= -0.16695316
    Epoch: 0350 cost= 0.128200993 W= 0.37620357 b= -0.10935676
    Epoch: 0400 cost= 0.122280121 W= 0.36867347 b= -0.055185713
    Epoch: 0450 cost= 0.117043234 W= 0.36159125 b= -0.004236537
    Epoch: 0500 cost= 0.112411365 W= 0.3549302 b= 0.04368245
    Epoch: 0550 cost= 0.108314596 W= 0.34866524 b= 0.08875148
    Epoch: 0600 cost= 0.104691163 W= 0.34277305 b= 0.13114017
    Epoch: 0650 cost= 0.101486407 W= 0.33723122 b= 0.17100765
    Epoch: 0700 cost= 0.098651998 W= 0.33201888 b= 0.20850417
    Epoch: 0750 cost= 0.096145160 W= 0.32711673 b= 0.24377018
    Epoch: 0800 cost= 0.093927994 W= 0.32250607 b= 0.27693948
    Epoch: 0850 cost= 0.091967128 W= 0.31816947 b= 0.308136
    Epoch: 0900 cost= 0.090232961 W= 0.31409115 b= 0.33747625
    Epoch: 0950 cost= 0.088699281 W= 0.31025505 b= 0.36507198
    Epoch: 1000 cost= 0.087342896 W= 0.30664718 b= 0.39102668
    Optimization Finished!
    Training cost= 0.087342896 W= 0.30664718 b= 0.39102668


    参考:
    Author: Aymeric Damien
    Project: https://github.com/aymericdamien/TensorFlow-Examples/

  • 相关阅读:
    jdbc连接数据库
    UUID
    Oracle 查询
    JAVA开发工具eclipse中@author怎么改
    JAVA实现多线程入门
    JAVA编程中的类和对象
    为ubuntu操作系统增加root用户
    搭建Java环境JDK,和运行环境JRE
    安装Ubuntu14.04版本的操作系统
    Eclipse连接到My sql数据库之前操作
  • 原文地址:https://www.cnblogs.com/brightyuxl/p/9880411.html
Copyright © 2011-2022 走看看