zoukankan      html  css  js  c++  java
  • 组合数取模

    D - Combinations
    Given n different objects, you want to take k of them. How many ways to can do it?

    For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.

    Take 1, 2

    Take 1, 3

    Take 1, 4

    Take 2, 3

    Take 2, 4

    Take 3, 4

    Input
    Input starts with an integer T (≤ 2000), denoting the number of test cases.

    Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).

    Output
    For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

    Sample Input
    3

    4 2

    5 0

    6 4

    Sample Output
    Case 1: 6

    Case 2: 1

    Case 3: 15
                                                                                  这题目有两种方法



    第一种是通俗易懂但要复杂一点的方法,就是你要分解质因数,用桶排记录它们的个数,组合的公式 C(n,m)= n!/(m!*(n-m)!)将n! 的所有质因数累加,m!和(n-m)!的质因数减去,

    最后算出这些质因数相乘的值。这就要用到线性筛啊,快速幂等等

    附上代码(很长)

      1 var
      2   n,m,i,j,k,t,sum,p:longint;
      3   ans:int64;
      4   mark:array[1..200000] of boolean;
      5   prim,num,markx:array[1..200000] of int64;
      6 function prime(x:longint):longint;
      7   var i,j,k:longint;
      8   begin
      9     k:=0;
     10     for i:=2 to x do
     11       begin
     12         if mark[i]
     13           then
     14             begin
     15               k:=k+1;
     16               prim[k]:=i;
     17               markx[i]:=k;
     18             end;
     19         for j:=1 to k do
     20           begin
     21             if i*prim[j]>m
     22               then break;
     23             mark[i*prim[j]]:=false;
     24             if i mod prim[j]=0
     25               then break;
     26           end;
     27       end;
     28     prime:=k;
     29   end;
     30 function f(a,b:longint):int64;
     31   var y:int64;
     32   begin
     33     t:=1;
     34     y:=a;
     35     while b<>0 do
     36       begin
     37         if (b and 1)=1
     38           then t:=t*y mod p;
     39         y:=y*y mod p;
     40         b:=b shr 1;
     41       end;
     42     f:=t;
     43   end;
     44  
     45 begin
     46   readln(m,n,p);
     47   for i:=1 to m do
     48     mark[i]:=true;
     49   sum:=prime(m);
     50   for i:=2 to m do
     51     begin
     52       if mark[i]
     53         then
     54           begin
     55             inc(num[markx[i]]);
     56             continue;
     57           end;
     58       k:=i;
     59       j:=1;
     60       while (prim[j]<=trunc(sqrt(i)))and(k>1) do
     61         begin
     62           if k mod prim[j]=0
     63             then
     64               while k mod prim[j]=0 do
     65                 begin
     66                   k:=k div prim[j];
     67                   num[j]:=num[j]+1;
     68                 end;
     69           j:=j+1;
     70         end;
     71       if k>1
     72         then inc(num[markx[k]]);
     73     end;
     74   for i:=2 to n do
     75     begin
     76       if mark[i]
     77         then
     78           begin
     79             dec(num[markx[i]]);
     80             continue;
     81           end;
     82       k:=i;
     83       j:=1;
     84       while (prim[j]<=trunc(sqrt(i)))and(k>1) do
     85         begin
     86           if k mod prim[j]=0
     87             then
     88               while k mod prim[j]=0 do
     89                 begin
     90                   k:=k div prim[j];
     91                   num[j]:=num[j]-1;
     92                 end;
     93           j:=j+1;
     94         end;
     95       if k>1
     96         then dec(num[markx[k]]);
     97     end;
     98       for i:=2 to m-n do
     99     begin
    100       if mark[i]
    101         then
    102           begin
    103             dec(num[markx[i]]);
    104             continue;
    105           end;
    106       k:=i;
    107       j:=1;
    108       while (prim[j]<=trunc(sqrt(i)))and(k>1) do
    109         begin
    110           if k mod prim[j]=0
    111             then
    112               while k mod prim[j]=0 do
    113                 begin
    114                   k:=k div prim[j];
    115                   num[j]:=num[j]-1;
    116                 end;
    117           j:=j+1;
    118         end;
    119       if k>1
    120         then dec(num[markx[k]]);
    121     end;
    122  
    123   ans:=1;
    124   for i:=1 to sum do
    125      if num[i]>0
    126        then ans:=(ans*f(prim[i],num[i])) mod p;
    127   writeln(ans);
    128 end.
    View Code

    第二种就要简单多了,直接算,但是因为要取模,模数又很大,不能直接取模,要用到逆元,就是乘上逆元再模。求逆元呢,要用到扩展欧几里得。再就是一点组合数的运算了

     1 var
     2 l,t,i,modd:longint;
     3 f,inv:array[0..1100005]of int64;
     4 n,m:int64;
     5 function exgcd(a,b:int64;var x,y:int64):int64;
     6  var r,t:int64;
     7  begin
     8    if b=0 then
     9     begin
    10       x:=1;
    11       y:=0;
    12       exit(a);
    13     end;
    14     r:=exgcd(b,a mod b,x,y);
    15     t:=x;
    16     x:=y;
    17     y:=t-a div b*y;
    18     exit(r);
    19  end;
    20 function cal(d,m:int64):int64;
    21  var x,y:int64;
    22   begin
    23    exgcd(d,m,x,y);
    24    exit((x mod m+m) mod m);
    25  end;
    26  function c(a,b:int64):int64;
    27   begin
    28    exit(f[a]*inv[b]mod modd *inv[a-b] mod modd);
    29   end;
    30 begin
    31 readln(t);
    32 modd:=1000003;
    33 f[0]:=1;inv[0]:=1;
    34 for i:=1 to 1010000 do
    35  begin
    36   f[i]:=f[i-1]*i mod modd;
    37   inv[i]:=cal(f[i],modd);
    38  end;
    39 
    40 for l:=1 to t do
    41  begin
    42   readln(n,m);
    43 //  if m=0 then begin writeln(1); continue; end; 不要想当然乱加条件,先试试程序对于特殊样例能不能过,能过就不要加初始条件了
    44   writeln('Case ',l,': ',c(n,m));
    45  end;
    46 end.
    NOIP2018 rp++
  • 相关阅读:
    软件技术文档撰写要求
    UML需求分析步骤实例解析
    sql 操作重复数据集合
    cookie无法读取的问题
    软件开发中,这些文档你用到了吗?
    软件测试报告[样本]
    一个软件设计的全过程(基于UML)
    命令 状态 职责链 三种模式之间的异同
    PHP的MVC实现(3)
    怎么样整理有用的资料?
  • 原文地址:https://www.cnblogs.com/brilliant107/p/9448275.html
Copyright © 2011-2022 走看看