zoukankan      html  css  js  c++  java
  • 我,不是说了PID要平均值吗?

      前几日写了一篇PID算法学习笔记,并幻想了一个场景进行算法仿真。经过不断探索后,博主发现,PID算法的精髓不在算法逻辑,而在于PID三个参数的值。本篇随笔将延续上次的仿真实验进行调试,总结PID调参的规律和方法。


     

    一、调参口诀

      先看看百度找到的调参口诀。

    参数整定找最佳, 从小到大顺序查。①
    先是比例后积分, 最后再把微分加。②
    曲线振荡很频繁, 比例度盘要放大。③
    曲线漂浮绕大弯, 比例度盘往小扳。④
    曲线偏离回复慢, 积分时间往下降。⑤
    曲线波动周期长, 积分时间再加长。⑥
    曲线振荡频率快, 先把微分降下来。⑦
    动差大来波动慢, 微分时间应加长。⑧
    理想曲线两个波, 前高后低四比一。⑨
    一看二调多分析, 调节质量不会低。⑩
     

     


     

    二、调参实战

      口诀①,从小到大。根据${PID}$公式可知,积分常数${I}$越大,对输出值影响越小,而比例常数和微分常数越大,对输出值影响越大。

      因此,以${(P,I,D)=(5,500,0)}$为初始值,其仿真曲线为

      口诀②,先比例。先调节${P}$,分别为5,25,50。

      如上图,比例系数越大,曲线越快接近设定值,${P}$为50时,效果最佳。

      后积分。后调${I}$,分别为50, 5, 0.5

      如上图,积分常数P越小,曲线越快达到设定值。当${P}$为0.5时效果最佳

      再微分。再调${D}$,分别为0.005,  0.05,  0.5

       如上图,${D}$值变大,曲线并没有明显变化。通过上面几次调节,暂时得到一组较优的PID值,为

    ${PID_{s}=(50,500,0)}$

      进一步研究,以该值为基准,改变其中的值。

      (1)改变P值,改变为500,发现曲线很快超出了设定值,但是如果不考虑稳定性的话,该曲线能更快接近设定值。

      (2)改变I值,改变为0.02,发现曲线也会很快超出设定值,后缓慢抖动接近设定值,抖动频率小于曲线(1),根据口诀⑨,这样的曲线可以称作“理想曲线”

       (3)改变${D}$值,改变为0.0.75,曲线剧烈抖动。根据口诀⑦可知,积分系数过大,需要减小。


    三、总结

       我的数学模型存在很多缺陷,并不能完全模仿真实环境。进行简单的调参后可以发现,P系数调节可能出现“一劳永逸”的情况。而I调节可以减弱P的某些过激行为,比如剧烈抖动变为缓慢震荡,D调节则增强这种行为。本实验中,D系数的作用并不明显,还应在以后的实验中多多观察。

      最后,如果调成平均值会发生什么呢?

      看,它是不是变得非常强大了……

      我,不是说了我不是标题党吗?

  • 相关阅读:
    Unknown type '246 in column 3 of 5 in binary-encoded result set
    IOS开发常用的linux命令
    苹果开发中常用英语单词
    ios 中的UI控件学习总结(1)
    Srping MVC+mybatis mapping 多映射 配置
    IIS程序POST请求被触发两次的灵异事件
    文件服务器共享专用端口留档记录
    windows环境配置showdoc在线文档教程
    WindowsSever2008 R2 Standard 共享打印机手顺
    高效计算_七月算法5月深度学习班第2次课程笔记
  • 原文地址:https://www.cnblogs.com/brosy/p/12891667.html
Copyright © 2011-2022 走看看