zoukankan      html  css  js  c++  java
  • (ZOJ 3822)Domination(概率DP)

    Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.

    Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

    "That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    There are only two integers N and M (1 <= NM <= 50).

    Output

    For each test case, output the expectation number of days.

    Any solution with a relative or absolute error of at most 10-8 will be accepted.

    Sample Input

    2
    1 3
    2 2
    

    Sample Output

    3.000000000000
    2.666666666667

    疯了!!wa了能有10+遍,最后发现是memset(dp,0,sizeof(0));!!!!!!

    dp[i][j][k]表示有i行j列满足条件,已经用了k个棋子
    每个dp状态可以推导出4个其他状态,具体参见代码~
    和其他几道题差不多
    #include<iostream>
    #include<cstdio>
    #include<vector>
    #include<set>
    #include<map>
    #include<string.h>
    #include<cmath>
    #include<algorithm>
    #include<queue>
    #include<stack>
    #define LL long long
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    
    using namespace std;
    
    double dp[60][60][2600];
    
    int main()
    {
        int t;
        scanf("%d",&t);
        while(t--)
        {
            double n,m;
            scanf("%lf%lf",&n,&m);
            memset(dp,0,sizeof(dp));
            for(int i=n;i>=0;i--)
                for(int j=m;j>=0;j--)
                    for(int k=i*j;k>=max(i,j);k--)
                        {
                            if(i==n&&j==m)
                                continue;
                            double p1=1.0*j*(n-i)/(1.0*n*m-k);
                            double p2=1.0*i*(m-j)/(1.0*n*m-k);
                            double p3=1.0*(i*j-k)/(1.0*n*m-k);
                            double p4=1.0*(n-i)*(m-j)/(1.0*n*m-k);
                                dp[i][j][k]=(p1*dp[i+1][j][k+1]+p2*dp[i][j+1][k+1]+p3*dp[i][j][k+1]+p4*dp[i+1][j+1][k+1]+1.0);
                        }
            printf("%.12lf
    ",dp[0][0][0]);
        }
        return 0;
    }
    此地非逐弃者之王座,彼方乃行愿者之归所。无限清澈,星界银波。
  • 相关阅读:
    spring+hibernate常见异常集合
    Java报错原因汇总
    java常见异常集锦
    连接池 druid(阿里巴巴的框架)
    企业支付宝账号开发接口实现
    Maven使用常见问题整理
    MySQL的分页
    Struts2中通配符的使用
    Centos下安装mysql 总结
    将linux用在开发环境中
  • 原文地址:https://www.cnblogs.com/brotherHaiNo1/p/8433326.html
Copyright © 2011-2022 走看看