昨晚刚昨晚华为笔试题,用到了BFS和DFS,可惜自己学艺不精,忘记了实现原理,现在借用大佬写的内容给自己做个提高
转自:https://www.jianshu.com/p/70952b51f0c8
图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V
)表示,而对象之间的关系或者关联则通过图的边(E
)来表示。
图可以分为有向图和无向图,一般用G=(V,E)
来表示图。经常用邻接矩阵或者邻接表来描述一副图。
在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS
)和深度优先搜索(DFS
)。
广度优先搜索(BFS)
广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。
a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。
b. 将起始结点放入队列中。
c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现
d. 按照同样的方法处理队列中的下一个结点。
基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。
用一副图来表达这个流程如下:
从顶点1开始进行广度优先搜索:
- 初始状态,从顶点1开始,队列={1}
- 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
- 访问2的邻接结点,2出队,4入队,队列={3,4}
- 访问3的邻接结点,3出队,队列={4}
- 访问4的邻接结点,4出队,队列={ 空}
结点5对于1来说不可达。
上面的图可以通过如下邻接矩阵表示:
int maze[5][5] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 1, 0 }, { 0, 1, 1, 1, 0 }, { 1, 0, 0, 0, 0 }, { 0, 0, 1, 1, 0 } };
BFS核心代码如下:
#include <iostream> #include <queue> #define N 5 using namespace std; int maze[N][N] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 1, 0 }, { 0, 1, 1, 1, 0 }, { 1, 0, 0, 0, 0 }, { 0, 0, 1, 1, 0 } }; int visited[N + 1] = { 0, }; void BFS(int start) { queue<int> Q; Q.push(start); visited[start] = 1; while (!Q.empty()) { int front = Q.front(); cout << front << " "; Q.pop(); for (int i = 1; i <= N; i++) { if (!visited[i] && maze[front - 1][i - 1] == 1) { visited[i] = 1; Q.push(i); } } } } int main() { for (int i = 1; i <= N; i++) { if (visited[i] == 1) continue; BFS(i); } return 0; }
深度优先搜索(DFS)
深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。
初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历:
a. 选择起始顶点涂成灰色,表示还未访问
b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了
c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。
d. 上一层继续做如上操作,知道所有顶点都访问过。
用图可以更清楚的表达这个过程:
深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。
初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历:
a. 选择起始顶点涂成灰色,表示还未访问
b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了
c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。
d. 上一层继续做如上操作,知道所有顶点都访问过。
用图可以更清楚的表达这个过程:
从顶点1开始做深度搜索:
- 初始状态,从顶点1开始
- 依次访问过顶点1,2,3后,终止于顶点3
- 从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
- 从顶点5回溯到顶点2,并且终止于顶点2
- 从顶点2回溯到顶点1,并终止于顶点1
- 从顶点4开始访问,并终止于顶点4
上面的图可以通过如下邻接矩阵表示:
int maze[5][5] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 0, 1 }, { 0, 0, 1, 0, 0 }, { 1, 1, 0, 0, 1 }, { 0, 0, 1, 0, 0 } };
DFS核心代码如下(递归实现):
#include <iostream> #define N 5 using namespace std; int maze[N][N] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 0, 1 }, { 0, 0, 1, 0, 0 }, { 1, 1, 0, 0, 1 }, { 0, 0, 1, 0, 0 } }; int visited[N + 1] = { 0, }; void DFS(int start) { visited[start] = 1; for (int i = 1; i <= N; i++) { if (!visited[i] && maze[start - 1][i - 1] == 1) DFS(i); } cout << start << " "; } int main() { for (int i = 1; i <= N; i++) { if (visited[i] == 1) continue; DFS(i); } return 0; }
非递归实现如下,借助一个栈:
#include <iostream> #include <stack> #define N 5 using namespace std; int maze[N][N] = { { 0, 1, 1, 0, 0 }, { 0, 0, 1, 0, 1 }, { 0, 0, 1, 0, 0 }, { 1, 1, 0, 0, 1 }, { 0, 0, 1, 0, 0 } }; int visited[N + 1] = { 0, }; void DFS(int start) { stack<int> s; s.push(start); visited[start] = 1; bool is_push = false; while (!s.empty()) { is_push = false; int v = s.top(); for (int i = 1; i <= N; i++) { if (maze[v - 1][i - 1] == 1 && !visited[i]) { visited[i] = 1; s.push(i); is_push = true; break; } } if (!is_push) { cout << v << " "; s.pop(); } } } int main() { for (int i = 1; i <= N; i++) { if (visited[i] == 1) continue; DFS(i); } return 0; }
有的DFS是先访问读取到的结点,等回溯时就不再输出该结点,也是可以的。算法和我上面的区别就是输出点的时机不同,思想还是一样的。DFS在环监测和拓扑排序中都有不错的应用。