zoukankan      html  css  js  c++  java
  • (Caffe)基本类Blob,Layer,Net(一)

    本文地址:http://blog.csdn.net/mounty_fsc/article/details/51085654

    Caffe中,Blob。Layer,Net,Solver是最为核心的类,下面介绍这几个类,Solver将在下一节介绍。

    1 Blob

    1.1 简单介绍

    Blob是:

    1. 对待处理数据带一层封装,用于在Caffe中通信传递。
    2. 也为CPU和GPU间提供同步能力
    3. 数学上,是一个N维的C风格的存储数组
      总的来说。Caffe使用Blob来交流数据,其是Caffe中标准的数组与统一的内存接口,它是多功能的。在不同的应用场景具有不同的含义,如能够是:batches of images, model parameters, and derivatives for optimization等。

    1.2 源码

    /** 
     * @brief A wrapper around SyncedMemory holders serving as the basic 
     *        computational unit through which Layer%s, Net%s, and Solver%s 
     *        interact. 
     * 
     * TODO(dox): more thorough description. 
     */  
    template <typename Dtype>  
    class Blob {  
     public:  
      Blob()  
           : data_(), diff_(), count_(0), capacity_(0) {}  
    
      /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.  
      explicit Blob(const int num, const int channels, const int height,  
          const int width);  
      explicit Blob(const vector<int>& shape);  
    
      .....  
    
     protected:  
      shared_ptr<SyncedMemory> data_;  
      shared_ptr<SyncedMemory> diff_;  
      shared_ptr<SyncedMemory> shape_data_;  
      vector<int> shape_;  
      int count_;  
      int capacity_;  
    
      DISABLE_COPY_AND_ASSIGN(Blob);  
    };  // class Blob  

    注:此处仅仅保留了构造函数与成员变量。

    说明:

    1. Blob在实现上是对SyncedMemory(见1.5部分)进行了一层封装。

    2. shape_为blob维度,见1.3部分
    3. data_为原始数据
    4. diff_为梯度信息
    5. count_为该blob的总容量(即数据的size)。函数count(x,y)(或count(x))返回某个切片[x,y]([x,end])内容量,本质上就是shape[x]shape[x+1]….*shape[y]的值

    1.3 Blob的shape

    由源码中能够注意到Blob有个成员变量:vector shape_
    其作用:

    1. 对于图像数据,shape能够定义为4维的数组(Num, Channels, Height, Width)或(n, k, h, w)。所以Blob数据维度为n*k*h*w。Blob是row-major保存的,因此在(n, k, h, w)位置的值物理位置为((n * K + k) * H + h) * W + w。当中Number是数据的batch size,对于256张图片为一个training batch的ImageNet来说n = 256;Channel是特征维度,如RGB图像k = 3
    2. 对于全连接网络,使用2D blobs (shape (N, D))。然后调用InnerProductLayer
    3. 对于參数,维度依据该层的类型和配置来确定。对于有3个输入96个输出的卷积层,Filter核 11 x 11,则blob为96 x 3 x 11 x 11. 对于全连接层,1000个输出。1024个输入。则blob为1000 x 1024.

    1.4 Blob的行优先的存储方式

    以Blob中二维矩阵为例(如全连接网络shape (N, D))。如图所看到的。同样的存储方式能够推广到多维。

    这里写图片描写叙述

    1.5 SyncedMemory

    由1.2知。Blob本质是对SyncedMemory的再封装。

    其核心代码例如以下:

    /** 
     * @brief Manages memory allocation and synchronization between the host (CPU) 
     *        and device (GPU). 
     * 
     * TODO(dox): more thorough description. 
     */  
    class SyncedMemory {  
     public:  
    ...  
     const void* cpu_data();  
      const void* gpu_data();  
      void* mutable_cpu_data();  
      void* mutable_gpu_data();  
    ...  
     private:  
    ...  
      void* cpu_ptr_;  
      void* gpu_ptr_;  
    ...  
    };  // class SyncedMemory  

    Blob同一时候保存了data_和diff_,其类型为SyncedMemory的指针。
    对于data_(diff_同样),事实上际值要么存储在CPU(cpu_ptr_)要么存储在GPU(gpu_ptr_),有两种方式訪问CPU数据(GPU同样):

    1. 常量方式,void* cpu_data(),其不改变cpu_ptr_指向存储区域的值。
    2. 可变方式,void* mutable_cpu_data(),其可改变cpu_ptr_指向存储区值。
      以mutable_cpu_data()为例

      void* SyncedMemory::mutable_cpu_data() {
        to_cpu();
        head_ = HEAD_AT_CPU;
        return cpu_ptr_;
      }
      
      inline void SyncedMemory::to_cpu() {
        switch (head_) {
        case UNINITIALIZED:
          CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_);
          caffe_memset(size_, 0, cpu_ptr_);
          head_ = HEAD_AT_CPU;
          own_cpu_data_ = true;
          break;
        case HEAD_AT_GPU:
      
      #ifndef CPU_ONLY
      
          if (cpu_ptr_ == NULL) {
            CaffeMallocHost(&cpu_ptr_, size_, &cpu_malloc_use_cuda_);
            own_cpu_data_ = true;
          }
          caffe_gpu_memcpy(size_, gpu_ptr_, cpu_ptr_);
          head_ = SYNCED;
      
      #else
      
          NO_GPU;
      
      #endif
      
          break;
        case HEAD_AT_CPU:
        case SYNCED:
          break;
        }
      }

    说明

    1. 经验上来说,假设不须要改变其值,则使用常量调用的方式,而且,不要在你对象中保存其指针。为何要这样设计呢。由于这样涉及能够隐藏CPU到GPU的同步细节,以及降低数据传递从而提高效率。当你调用它们的时候。SyncedMem会决定何时去复制数据,通常情况是仅当gnu或cpu改动后有复制操作,引用1官方文档中有一个样例说明何时进行复制操作。
    2. 调用mutable_cpu_data()能够让head转移到cpu上
    3. 第一次调用mutable_cpu_data()是UNINITIALIZED将运行9到14行。将为cpu_ptr_分配host内存
    4. 若head从gpu转移到cpu。将把数据从gpu拷贝到cpu中

    2 Layer

    2.1 简单介绍

    Layer是Caffe的基础以及基本计算单元。Caffe十分强调网络的层次性,能够说。一个网络的大部分功能都是以Layer的形式去展开的,如convolute,pooling,loss等等。
    在创建一个Caffe模型的时候,也是以Layer为基础进行的,需依照src/caffe/proto/caffe.proto中定义的网络及參数格式定义网络 prototxt文件(需了解google protocol buffer)

    2.2 Layer与Blob的关系

    如图,名为conv1的Layer 的输入是名为data的bottom blob,其输出是名为conv1的top blob。

    其protobuff定义例如以下,一个layer有一个到多个的top和bottom,其相应于blob

    layer {  
          name: "conv1"  
          type: "Convolution"  
          bottom: "data"  
          top: "conv1"  
         ....  
        }  

    2.3 源码

     /** 
         * Layer%s must implement a Forward function, in which they take their input 
         * (bottom) Blob%s (if any) and compute their output Blob%s (if any). 
         * They may also implement a Backward function, in which they compute the error 
         * gradients with respect to their input Blob%s, given the error gradients with 
         * their output Blob%s. 
         */  
        template <typename Dtype>  
        class Layer {  
         public:  
          /** 
           * You should not implement your own constructor. Any set up code should go 
           * to SetUp(), where the dimensions of the bottom blobs are provided to the 
           * layer. 
           */  
          explicit Layer(const LayerParameter& param)  
            : layer_param_(param), is_shared_(false) {  
        ...  
            }  
          virtual ~Layer() {}  
    
          /** 
           * @brief Implements common layer setup functionality. 
           * @param bottom the preshaped input blobs 
           * @param top 
           *     the allocated but unshaped output blobs, to be shaped by Reshape 
           */  
          void SetUp(const vector<Blob<Dtype>*>& bottom,  
              const vector<Blob<Dtype>*>& top) {  
        ...  
          }  
    
          ...  
    
          /** 
           * @brief Given the bottom blobs, compute the top blobs and the loss. 
           * 
    eturn The total loss from the layer. 
           * 
           * The Forward wrapper calls the relevant device wrapper function 
           * (Forward_cpu or Forward_gpu) to compute the top blob values given the 
           * bottom blobs.  If the layer has any non-zero loss_weights, the wrapper 
           * then computes and returns the loss.
           * 
           * Your layer should implement Forward_cpu and (optionally) Forward_gpu. 
           */  
          inline Dtype Forward(const vector<Blob<Dtype>*>& bottom,  
              const vector<Blob<Dtype>*>& top);  
    
          /** 
           * @brief Given the top blob error gradients, compute the bottom blob error 
           *        gradients. 
           * 
           * @param top 
           *     the output blobs, whose diff fields store the gradient of the error 
           *     with respect to themselves 
           * @param propagate_down 
           *     a vector with equal length to bottom, with each index indicating 
           *     whether to propagate the error gradients down to the bottom blob at 
           *     the corresponding index 
           * @param bottom 
           *     the input blobs, whose diff fields will store the gradient of the error 
           *     with respect to themselves after Backward is run 
           * 
           * The Backward wrapper calls the relevant device wrapper function 
           * (Backward_cpu or Backward_gpu) to compute the bottom blob diffs given the 
           * top blob diffs. 
           * 
           * Your layer should implement Backward_cpu and (optionally) Backward_gpu. 
           */  
          inline void Backward(const vector<Blob<Dtype>*>& top,  
              const vector<bool>& propagate_down,  
              const vector<Blob<Dtype>*>& bottom);  
    
         ...  
    
         protected:  
          /** The protobuf that stores the layer parameters */  
          LayerParameter layer_param_;  
          /** The phase: TRAIN or TEST */  
          Phase phase_;  
          /** The vector that stores the learnable parameters as a set of blobs. */  
          vector<shared_ptr<Blob<Dtype> > > blobs_;  
          /** Vector indicating whether to compute the diff of each param blob. */  
          vector<bool> param_propagate_down_;  
    
          /** The vector that indicates whether each top blob has a non-zero weight in 
           *  the objective function. */  
          vector<Dtype> loss_;  
    
          virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,  
              const vector<Blob<Dtype>*>& top) = 0;  
    
          virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,  
              const vector<Blob<Dtype>*>& top) {  
            // LOG(WARNING) << "Using CPU code as backup.";  
            return Forward_cpu(bottom, top);  
          }  
    
          virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,  
              const vector<bool>& propagate_down,  
              const vector<Blob<Dtype>*>& bottom) = 0;  
    
          virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,  
              const vector<bool>& propagate_down,  
              const vector<Blob<Dtype>*>& bottom) {  
            // LOG(WARNING) << "Using CPU code as backup.";  
            Backward_cpu(top, propagate_down, bottom);  
          }  
    
        ...  
    
         };  // class Layer  

    说明:每一层定义了三种操作

    1. Setup:Layer的初始化
    2. Forward:前向传导计算。依据bottom计算top,调用了Forward_cpu(必须实现)和Forward_gpu(可选,若未实现,则调用cpu的)
    3. Backward:反向传导计算。依据top计算bottom的梯度。其它同上

    2.4 派生类分类

    在Layer的派生类中,主要能够分为Vision Layers

    • Vision Layers
      Vison 层主要用于处理视觉图像相关的层。以图像作为输入,产生其它的图像。其主要特点是具有空间结构。
      包括Convolution(conv_layer.hpp)、Pooling(pooling_layer.hpp)、Local Response Normalization(LRN)(lrn_layer.hpp)、im2col等。注:老版本号的Caffe有头文件include/caffe/vision_layers.hpp,新版本号中用include/caffe/layer/conv_layer.hpp等代替
    • Loss Layers
      这些层产生loss,如Softmax(SoftmaxWithLoss)、Sum-of-Squares / Euclidean(EuclideanLoss)、Hinge / Margin(HingeLoss)、Sigmoid Cross-Entropy(SigmoidCrossEntropyLoss)、Infogain(InfogainLoss)、Accuracy and Top-k等
    • Activation / Neuron Layers
      元素级别的运算,运算均为同址计算(in-place computation。返回值覆盖原值而占用新的内存)。如:ReLU / Rectified-Linear and Leaky-ReLU(ReLU)、Sigmoid(Sigmoid)、TanH / Hyperbolic Tangent(TanH)、Absolute Value(AbsVal)、Power(Power)、BNLL(BNLL)等
    • Data Layers
      网络的最底层,主要实现数据格式的转换,如:Database(Data)、In-Memory(MemoryData)、HDF5 Input(HDF5Data)、HDF5 Output(HDF5Output)、Images(ImageData)、Windows(WindowData)、Dummy(DummyData)等
    • Common Layers
      Caffe提供了单个层与多个层的连接。

      如:Inner Product(InnerProduct)、Splitting(Split)、Flattening(Flatten)、Reshape(Reshape)、Concatenation(Concat)、Slicing(Slice)、Elementwise(Eltwise)、Argmax(ArgMax)、Softmax(Softmax)、Mean-Variance Normalization(MVN)等

    注,括号内为Layer Type,没有括号暂缺信息。具体咱见引用2

    3 Net

    3.1 简单介绍

    一个Net由多个Layer组成。

    一个典型的网络从data layer(从磁盘中加载数据)出发到loss layer结束。如图是一个简单的逻辑回归分类器。

    例如以下定义:

    name: "LogReg"
    layer {
      name: "mnist"
      type: "Data"
      top: "data"
      top: "label"
      data_param {
        source: "input_leveldb"
        batch_size: 64
      }
    }
    layer {
      name: "ip"
      type: "InnerProduct"
      bottom: "data"
      top: "ip"
      inner_product_param {
        num_output: 2
      }
    }
    layer {
      name: "loss"
      type: "SoftmaxWithLoss"
      bottom: "ip"
      bottom: "label"
      top: "loss"
    }

    3.2 源码

    /**
     * @brief Connects Layer%s together into a directed acyclic graph (DAG)
     *        specified by a NetParameter.
     *
     * TODO(dox): more thorough description.
     */
    template <typename Dtype>
    class Net {
     public:
    ...
      /// @brief Initialize a network with a NetParameter.
      void Init(const NetParameter& param);
    ...
    
      const vector<Blob<Dtype>*>& Forward(const vector<Blob<Dtype>* > & bottom,
          Dtype* loss = NULL);
    ...
      /**
       * The network backward should take no input and output, since it solely
       * computes the gradient w.r.t the parameters, and the data has already been
       * provided during the forward pass.
       */
      void Backward();
      ...
      Dtype ForwardBackward(const vector<Blob<Dtype>* > & bottom) {
        Dtype loss;
        Forward(bottom, &loss);
        Backward();
        return loss;
      }
    ...
    
     protected:
      ...
      /// @brief The network name
      string name_;
      /// @brief The phase: TRAIN or TEST
      Phase phase_;
      /// @brief Individual layers in the net
      vector<shared_ptr<Layer<Dtype> > > layers_;
      /// @brief the blobs storing intermediate results between the layer.
      vector<shared_ptr<Blob<Dtype> > > blobs_;
      vector<vector<Blob<Dtype>*> > bottom_vecs_;
      vector<vector<Blob<Dtype>*> > top_vecs_;
      ...
      /// The root net that actually holds the shared layers in data parallelism
      const Net* const root_net_;
    };
    }  // namespace caffe

    说明:

    1. Init中,通过创建blob和layer搭建了整个网络框架,以及调用各层的SetUp函数。
    2. blobs_存放这每一层产生的blobls的中间结果。bottom_vecs_存放每一层的bottom blobs,top_vecs_存放每一层的top blobs

    參考文献:
    [1].http://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
    [2].http://caffe.berkeleyvision.org/tutorial/layers.html
    [3].https://yufeigan.github.io
    [4].https://www.zhihu.com/question/27982282

  • 相关阅读:
    html 复习
    用openrowset连接远程SQL或插入数据
    查询SQL中的text类型字段内容,让其显示完整
    删除CheckBoxList未选中或选中的CheckBox选项
    RSA的加解密过程(转自CSDN,学习用)
    创建与删除SQL约束或字段约束。
    根据DataGrid绑定的列的SortException字段进行排序
    尽量避免IE拦截弹出窗口的代码,与ListBox的双击事件结合。
    比较好看的滚动条样式和按钮样式和文本框样式
    JS控制按钮10秒钟后才能正常使用
  • 原文地址:https://www.cnblogs.com/brucemengbm/p/7243050.html
Copyright © 2011-2022 走看看