zoukankan      html  css  js  c++  java
  • POJ -1679(次小生成树)模板

    The Unique MST
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions:34617   Accepted: 12637

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!


    题意:求是否有第二个最小生成树
    (次小生成树模板)
    #include<set>
    #include<map>
    #include<cmath>
    #include<ctime>
    #include<queue>
    #include<stack>
    #include<string>
    #include<cstdio>
    #include<cctype>
    #include<cstring>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    
    typedef long long ll;
    typedef unsigned int uint;
    typedef unsigned long long ull;
    
    const int maxn = 100 + 5;
    const int maxv = 10000 + 5;
    const int max_dis = 1e9 + 5;
    
    int T;
    int n,m;
    int a,b,c;
    int MST,_MST;
    bool vis[maxn];
    int father[maxn];
    int dist[maxn];
    int graph[maxn][maxn];
    bool used[maxn][maxn];
    int max_edge[maxn][maxn];
    
    void init() {
        memset(vis,false,sizeof(vis));
        memset(used,false,sizeof(used));
        memset(max_edge,-1,sizeof(max_edge));
        memset(graph,0x7f,sizeof(graph));
    }
    
    void input() {
        scanf("%d%d",&n,&m);
        for(int i=0; i<m; i++) {
            scanf("%d%d%d",&a,&b,&c);
            graph[a][b]=graph[b][a]=c;
            used[a][b]=used[b][a]=true;
        }
    }
    
    int prim() {
        int ans=0;
        dist[1]=0;
        vis[1]=true;
        father[1]=-1;
        for(int i=2; i<=n; i++) {
            father[i]=1;
            dist[i]=graph[1][i];
        }
        for(int i=1; i<n; i++) {
            int v=-1;
            for(int j=1; j<=n; j++) {
                if(!vis[j]&&(v==-1||dist[j]<dist[v])) v=j;
            }
            ans+=dist[v];
            vis[v]=true;
            used[father[v]][v]=used[v][father[v]]=false;
            for(int j=1; j<=n; j++) {
                if(vis[j]) {
                    max_edge[v][j]=max_edge[j][v]=max(max_edge[father[v]][j],dist[v]);
                } else {
                    if(graph[v][j]<dist[j]) {
                        dist[j]=graph[v][j];
                        father[j]=v;
                    }
                }
            }
        }
        return ans;
    }
    
    int second_prim() {
        int ans=max_dis;
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                if(used[i][j]) ans=min(ans,MST+graph[i][j]-max_edge[i][j]);
        return ans;
    }
    void solve() {
        MST=prim();
        _MST=second_prim();
        if(MST==_MST) printf("Not Unique!
    ");
        else printf("%d
    ",MST);
    }
    int main() {
        scanf("%d",&T);
        while(T--) {
            init();
            input();
            solve();
        }
        return 0;
    }
    View Code
    每一个不曾刷题的日子 都是对生命的辜负 从弱小到强大,需要一段时间的沉淀,就是现在了 ~buerdepepeqi
  • 相关阅读:
    java 运算符的优先级比较
    Java String类和StringBuffer类的区别
    Java 并发编程
    java构造函数和初始化
    Java 动态绑定
    Java day3
    Java day2
    Java day1
    计算机系统原理之程序是怎么运行的 【转】
    MemberCached 学习上【转】
  • 原文地址:https://www.cnblogs.com/buerdepepeqi/p/9105841.html
Copyright © 2011-2022 走看看