zoukankan      html  css  js  c++  java
  • 欧拉回路的一些东西

    定理:

    无向图G存在欧拉通路的充分必要条件:G为连通图,并且G仅有两个奇度结点(度数为奇数的节点)或者无奇度结点。
    推论1:当无向图G是有两个奇度的连通图时,G的欧拉通路必定以这两个结点为端点。
    推论2:当无向图G是无奇度的连通图时,G必有欧拉回路。

    有向图D存在有向欧拉通路的充分必要条件:D为有向图,D的基图连通,并且所有顶点的出度与入度都相等(情况1);或者除了两个定点外,其余顶点的出度与入度都相等,而这两个顶点中,一个顶点的出度与入度之差为1,另一个出度与入度只差为-1(情况2)。
    推论(1):情况1说明存在的是有向欧拉回路。
    推论(2):情况2说明存在的是有向欧拉通路,通路以出度与入度之差为1的顶点作为起点,以出度与入度之差为-1的顶点作为终点。

    起点的选定:

    寻找欧拉回路要分为两种情况:

    图中存在一个或两个度数为奇数的点,这是,起点必须是度数为奇数的点,必然的,终点必须为另一个度数为奇数的(如果是两个度数为奇数的点)

    图中的点的度数都是偶数,这就可以任意起点

    至于之后怎么搞,直接dfs,每次遍历时给边打上限制标记,回溯时记录路径

  • 相关阅读:
    [FJOI 2016] 神秘数
    [SHOI 2017] 寿司餐厅
    [HAOI 2012] Road
    [HAOI 2012] 容易题
    [TJOI 2018] XOR
    [NOI 2011] 阿狸的打字机
    [ZJOI 2010] 排列计数
    [TJOI2016 & HEOI2016] 字符串
    [HNOI 2011] 数学作业
    【NTT】loj#6261. 一个人的高三楼
  • 原文地址:https://www.cnblogs.com/bullshit/p/9842340.html
Copyright © 2011-2022 走看看