AT1984 Wide Swap
题意翻译
给出一个元素集合为({1,2,dots,N}(1leq Nleq 500,000))的排列(P),当有(i,j(1leq i<jleq N))满足(j-igeq K)((1leq Kleq N-1))且(|P_{i}-P{j}|=1)时,可以交换(P_{i})和(P_{j})
求:可能排列中字典序最小的排列
输入格式:
(N) (K)
(P_{1}) (P_{2}) (dots) (P_{N})
这题目真是好思路啊。
首先,一个元素有两个属性,称为权值(p)和位置(l),交换的过程可以定义为固定权值交换位置,或者固定位置交换权值。
发现原本题目中的条件不好操作,于是把权值和位置交换意义,那么问题就变成了:
让权值较小的尽可能呆在前面,当两个元素相邻并且权值之差不小于(k)时,可以交换这两个权值的位置。
我们把权值当成固有属性,拿位置去交换,那么如果两个元素的权值之差小于(k),那么它们的相对位置是不会改变的,我们对这一对按原有位置连一条有向边。
对整个图都这么连,然后以( t{topo})序为第一关键字,权值为第二关键字跑优先队列( t{topo})排序,就可以找到转换以后的字典序了。
但是发现这样连边是(O(n^2))的,过不了这个题,得想办法优化一下连边。
考虑一个点(i)会向之后的哪些点连边,( t{Ta})会连接权值在([p_i-k+1,p_i+k-1])内的所有边,而(k)是不变的。所以我们只需要连接( t{Ta})位置上第一个大于( t{Ta})和第一个小于( t{Ta})的边就可以了,其余的这两个点会连上。
发现可以用线段树维护,倒序加点,对权值建树,区间查询最小位置。
复杂度:(O(nlogn))
Code:
#include <cstdio>
#include <cstring>
#include <queue>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
#define lb(a) lower_bound(a)
#define is(a) insert(a)
#define ps(a) push(a)
const int N=5e5+10;
const int inf=0x3f3f3f3f;
int in[N],loc[N],p[N],ans[N],tot,n,k;
std::priority_queue <int,std::vector<int>,std::greater<int> > q;
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
#define ls id<<1
#define rs id<<1|1
int min(int x,int y){return x<y?x:y;}
int max(int x,int y){return x>y?x:y;}
int mi[N<<2];
void change(int id,int l,int r,int p,int d)
{
if(l==r) {mi[id]=d;return;}
int mid=l+r>>1;
if(p<=mid) change(ls,l,mid,p,d);
else change(rs,mid+1,r,p,d);
mi[id]=min(mi[ls],mi[rs]);
}
int query(int id,int L,int R,int l,int r)
{
if(mi[id]==inf) return inf;
if(l==L&&r==R) return mi[id];
int Mid=L+R>>1;
if(r<=Mid) return query(ls,L,Mid,l,r);
else if(l>Mid) return query(rs,Mid+1,R,l,r);
else return min(query(ls,L,Mid,l,Mid),query(rs,Mid+1,R,Mid+1,r));
}
int main()
{
scanf("%d%d",&n,&k);
rep(i,1,n) scanf("%d",p),p[p[0]]=i;
memset(mi,0x3f,sizeof(mi));
dep(i,n,1)
{
int loc=query(1,1,n,p[i],min(n,p[i]+k-1));
if(loc!=inf) add(p[i],p[loc]),++in[p[loc]];
loc=query(1,1,n,max(1,p[i]-k+1),p[i]);
if(loc!=inf) add(p[i],p[loc]),++in[p[loc]];
change(1,1,n,p[i],i);
}
rep(i,1,n) if(!in[i]) q.ps(i);
while(!q.empty())
{
int now=q.top();
ans[now]=++tot;
q.pop();
for(int i=head[now];i;i=Next[i])
{
int v=to[i];
--in[v];
if(!in[v]) q.ps(v);
}
}
rep(i,1,n) printf("%d
",ans[i]);
return 0;
}
2018.10.26