zoukankan      html  css  js  c++  java
  • tensorflow笔记之反向传播时用到的几种方法

    1. 梯度下降, tf.train.GradientDescentOptimizer(0.05),梯度下降的问题在与不一定能获得全局最优解,并且因为要在所有数据上最小化损失,所以损失函数是在所有训练数据上的损失和,所以在大数据情况下,需要的时间相当长。

    2.随机梯度下降,随机梯度下降优化的不是全部数据上的损失函数,在每一轮迭代中,都随机选择一条训练数据进行优化,这样训练时间大大减小,但是由于某一条数据上的全局最小不一定代表所有数据的全局最小,所以随机梯度下降也不一定能达到全局最优解。

    为了综合梯度下降和随机梯度下降的优点,在实际训练中通常将训练数据分为多个batch,每次只训练一个batch,这样可以大大减小收敛所需的迭代次数。

    3. MomentumOptimizer(),解决了梯度下降无法跳出局部极小值的问题。

    4. AdagradOptimizer(),根据每个变量变换优化步长,考虑了变量梯度的整个历史。

    5. AdadeltaOptimizer(),Adagrad有时候会很快使梯度到0,为了解决这个问题,Adadelta可以限制最少使用多少步。

  • 相关阅读:
    Quick Union
    Quick Find (QF)
    ubuntu kylin18 安装NVIDIA驱动
    vim 快捷键(update)
    Qt中的ui指针和this指针
    两种状态机扫描按键,第二种只要三行!!!
    RPi:QT+wiringPi demo程序
    esp-12e折腾
    vfd电子时钟制作
    vfd with stm8
  • 原文地址:https://www.cnblogs.com/buxizhizhoum/p/8253885.html
Copyright © 2011-2022 走看看