zoukankan      html  css  js  c++  java
  • Deep Learning 学习随记(三)Softmax regression

    讲义中的第四章,讲的是Softmax 回归。softmax回归是logistic回归的泛化版,先来回顾下logistic回归。

    logistic回归:

    训练集为{(x(1),y(1)),...,(x(m),y(m))},其中m为样本数,x(i)为特征。

    logistic回归是针对二分类问题的,因此类标y(i)∈{0,1},。其估值函数(hypothesis )如下:

    代价函数:

    softmax 回归:

    softmax回归解决的是多分类问题,即y(i)∈{1,2,...,k}。(这里softmax回归一般从类别1开始,而不是从0)。

    其估值函数形式如下:

    为了方便起见,我们同样使用符号θ来表示全部的模型参数。在实现softmax回归时,你通常会发现,将θ用一个k×(n+1)的矩阵来表示会十分便利,该矩阵是将θ1,θ2,...,θk按行罗列起来得到的,如下所示:

    下面是softmax回归的代价函数:

    可以看出softmax是logistic的一个泛化版。logistic是k=2情况下的softmax回归。

    为了求解J(θ),通常借助于梯度下降法或L-BFGS算法等迭代优化算法。经过求导,我们可以得到梯度公式为:

    有了上面的偏导数公式以后,我们就可以将它带入到梯度下降法等算法中,来使J(θ)最小化。例如,在梯度下降法标准实现的每一次迭代中,我们需要进行如下更新:

    (对每个j=1,2,...k)

    有一点需要注意的是,按上述方法用softmax求得的参数并不是唯一的,因为,对每一个参数来说,若都减去一个相同的值,依然是上述的代价函数的值。证明如下:

    这表明了softmax回归中的参数是“冗余”的。更正式一点来说,我们的softmax模型被过度参数化了,这意味着对于任何我们用来与数据相拟合的估计值,都会存在多组参数集,它们能够生成完全相同的估值函数hθ将输入x映射到预测值。因此使J(θ)最小化的解不是唯一的。而Hessian矩阵是奇异的/不可逆的,这会直接导致Softmax的牛顿法实现版本出现数值计算的问题。

    为了解决这个问题,加入一个权重衰减项到代价函数中:

    有了这个权重衰减项以后(对于任意的λ>0),代价函数就变成了严格的凸函数而且hession矩阵就不会不可逆了。

    此时的偏导数:

    softmax 练习:

    这里讲义同样给出了练习题,打算自己写写看,暂时先写到这,接下来有时间把自己写好的代码贴上来。

  • 相关阅读:
    海选女主角
    发工资咯:)
    绝对值排序
    数列有序!
    母牛的故事
    一文看懂外汇风险准备金率调整为 20%的含义
    1080i减少带宽
    为什么要采用隔行扫描?
    720P、1080P、4K是什么意思?
    VBR一次編碼 v.s 二次編碼(VBR 1-pass vs 2-pass)
  • 原文地址:https://www.cnblogs.com/bzjia-blog/p/3366780.html
Copyright © 2011-2022 走看看