根据(Polya)定理,设每个置换的循环节个数为(k_i),颜色总数为(m),置换群的大小为(|G|),那么染色的方案数为$$Ans=frac{sum_{i=1}^{|G|}m^{k_i}}{|G|}$$
然后这题里面置换群分别为转一格,转两格,...,转(n)格,则转(i)格的置换的循环节大小为(gcd(i,n)),那么答案就可以表示为$$Ans=frac{sum_{i=1}^{n}n^{gcd(n,i)}}{n}$$
时间复杂度(O(nlogn))非常优秀
那么只好推柿子推柿子$$Ans=frac{sum_{i=1}^{n}n^{gcd(n,i)}}{n}$$
[Ans=frac{sum_{d=1}^n n^d sum_{i=1}^n [gcd(i,n)==d]}{n}
]
[Ans=frac{sum_{d|n} n^d sum_{i=1}^{leftlfloorfrac{n}{d}
ight
floor} [gcd(i,{leftlfloorfrac{n}{d}
ight
floor} )==d]}{1}
]
[Ans=frac{sum_{d|n} n^d varphi(leftlfloorfrac{n}{d}
ight
floor)}{1}
]
然后因为(n)特别大,所以建议在线求(varphi)
然后复杂度就达到(O()能过())了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
void print(int x){if(x>9)print(x/10);putchar(x%10+48);}
const int N=1e5,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=1ll*x*x%P)if(y&1)res=1ll*res*x%P;
return res;
}
int p[N+5],vis[N+5],phi[N+5],m,n,inv[N+5];
void init(){
phi[1]=1;fp(i,2,N){
if(!vis[i])p[++m]=i,phi[i]=i-1;
for(R int j=1;j<=m&&1ll*i*p[j]<=N;++j){
vis[i*p[j]]=1;
if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
inv[0]=inv[1]=1;fp(i,2,N)inv[i]=((-1ll*P/i*inv[P%i])%P+P)%P;
}
int PHI(int n){
R int res=n;
for(R int i=1;1ll*p[i]*p[i]<=n;++i)if(n%p[i]==0){
res=res-res/p[i];
while(n%p[i]==0)n/=p[i];
}if(n!=1)res=res-res/n;
return res;
}
inline int Phi(R int n){return n<=N?phi[n]:PHI(n);}
inline int Inv(R int n){return n<=N?inv[n]:ksm(n,P-2);}
void solve(){
n=read();R int res=0;
for(R int i=1;i*i<=n;++i)if(n%i==0){
res=add(res,1ll*Phi(i)*ksm(n,n/i)%P);
if(i*i!=n)res=add(res,1ll*Phi(n/i)*ksm(n,i)%P);
}print(1ll*res*Inv(n)%P),putchar('
');
}
int main(){
// freopen("testdata.in","r",stdin);
init();
int T=read();
while(T--)solve();
return 0;
}